

�����������	
�����
���� �������
���� ���� ��� �����

������ ������ � ���� !������
������ �"�����

�����������	

�����
���� �������
���� ���� ��� �����

#��� $% &�	���� ��� '()�
���

� �

�* ������ ������

�* ���� !������
+�!,���!�
�* ������ �"�����

-��������� !, ��������
�"��!��
./'(' ��������
0������

������*������1���2��������*��
����*�!������1���2��������*��
������*�"�����1���2��������*��

�����!	��	2��2+�
��"���!�
���
3�
���� !, �!�	���� �!���!� 4��
��5 6678./(7

���4 (27962$9'%(2. �����	�� ������ :�����
��	 4�� ;!��

)��� �!�� �� ��
<�"� �! "!����	��* ��� ��	��� ��� ��������= ������� ��� ��!�� !� ���� !,
��� �������� �� "!�"�����= ���"�,�"���� ��� ��	��� !, ���������!�= ���������	= ����� !, �����2
�����!��= ��"�����!�=
�!��"�����	= ����!��"��!� !� ��"�!,��� !� �� ��� !���� ���= ���
��!��	� �� ����
����*
����"���!� !, ���� ��
��"���!� !� ����� �����!, �� ��������� !���
����� ��� ��!����!�� !, ��� 0����� �!����	�� 3�� !, ������
�� 8= '8.7= �� ��� "������
�����!�= ��� ��������!� ,!� ��� ���� ������
� !
������ ,�!� �����	��2>����	* >�!����!��
��� ���
�� ,!� ��!��"���!� ����� ��� 0����� �!����	�� 3��*

�����	�� �� � ���� !, �����	�� �"���"�?�������� �����

�����	��!�����*"!�

@ �����	�� ������ � :�����
��	 $667
+������ �� 0������

)�� ��� !, 	������ ���"������� �����= ��	������� �����= ����������= ��"* �� ���� ��
��"�2
��!� �!�� �!� �����= ���� �� ��� �
���"� !, � ���"�,�" ���������= ���� ��"� ����� ���
������ ,�!� ��� �������� ��!��"���� ���� ��� ��	�����!�� ��� �����,!�� ,��� ,!� 	������
���*

:���"!���2
���	�5 A��"� ��"����= :�����
��	

�+�4 ''(%68$7 9(B('7(27 9 ($ ' 6 C +������ !� �"��2,��� �����

Preface

This book addresses readers interested in the design and development of distributed software
systems with Java and CORBA. The programming language Java, first introduced by Sun
Microsystems in 1995 in an attempt to remedy some of the deficiencies of C++, has mean-
while pervaded all fields of software development. CORBA, the Common Object Request
Broker Architecture, is an industry standard that enables the platform- and programming lan-
guage-independent implementation of distributed object-oriented systems.

When developing and testing the examples and exercises for this book, we used three differ-
ent Object Request Broker products (ORBs) that are available free of charge. The first is
JacORB 2.2, a Java object request broker originated in the CS department at Freie Univer-
sität Berlin, see http://www.jacorb.org. The second one is part of Sun’s JavaTM 2
Platform Standard Edition 5.0 Development Kit (JDK), see http://java.sun.com.
The third ORB is OpenORB 1.3.1 developed by the Community OpenORB Project, see
http://openorb.sf.net. Detailed information on downloading, installing, and cus-
tomizing these ORBs can be found in Appendix E and at the book’s website http://www.
wifo.uni-mannheim.de/CORBA in subdirectory ORB.

Under this URL, one also has the possibility to give feedback, send in corrections, or submit
any other suggestions for improvement. In subdirectory Examples all the book’s examples
are provided; in subdirectory Exercises, one finds our solutions to the exercises compiled
at the end of the chapters. In the examples, we concentrated on the respective CORBA con-
cept to be explained and did not extend and elaborate them to simulate development of real-
world applications.

We would like to thank Lisa Köblitz and Michael Schneider for testing the example pro-
grams. Lisa also helped us create the figures and illustrations included throughout the book.
Colleen Litschke carefully read and reread the text and corrected earlier versions; many
thanks for improving our English. Finally, special thanks to Dr. Martina Bihn of Springer-
Verlag and her team for the reliable successful cooperation, which we meanwhile have ex-
perienced for many years. Financial help from the University of Mannheim’s Prechel-Stif-
tung e.V., who supported us in multiple ways, is gratefully acknowledged.

Markus Aleksy, Axel Korthaus, Martin Schader

Malibu, Mannheim, Paris June 2005

Contents

1 Preliminaries 1

1.1 Organization of the Book.. 1
1.2 Additional Material... 2
1.3 Conventions Used in This Book ... 3
1.4 How to Read This Book.. 3

2 Introduction 5

2.1 Object-Oriented Paradigm .. 6
2.2 Distributed Systems .. 8

3 Concepts of the CORBA Standard 13

3.1 Object Management Group... 13
3.2 Object Management Architecture ... 13
3.3 Common Object Request Broker Architecture ... 15
3.4 Elements of the CORBA Standard ... 15

3.4.1 Object Request Broker.. 15
3.4.2 Object Adapter.. 16
3.4.3 Interface Definition Language .. 18
3.4.4 Interface Repository.. 18
3.4.5 Dynamic Invocation Interface... 19
3.4.6 Dynamic Skeleton Interface.. 20
3.4.7 Implementation Repository... 20

3.5 Procedural Steps in Developing a CORBA-Based Application 20
3.6 Remote Invocations .. 21
3.7 Interoperability in the CORBA Standard.. 22

3.7.1 Protocols Defined by CORBA.. 23
3.7.2 Interoperable Object Reference .. 24

4 Introduction to the Interface Definition Language 27

4.1 Lexical Elements of IDL... 27
4.1.1 Comments ... 27
4.1.2 Identifiers .. 28

4.1.2.1 Excursion: Style Guidelines for IDL Identifiers 28
4.1.2.2 Excursion: Additional Formatting Rules 29

4.1.3 Keywords .. 29
4.1.4 Punctuation Characters ... 30
4.1.5 Preprocessor Directives .. 31
4.1.6 Syntax Notation .. 31

4.2 IDL Types ... 32
4.2.1 Basic Types... 33
4.2.2 Constructed Types .. 34

4.2.2.1 Structures ... 34

viii Contents

4.2.2.2 Enumerations..36
4.2.2.3 Unions...36

4.2.3 Excursion: Named Data Types ..38
4.2.4 Template Types ...38

4.2.4.1 Fixed Types ..38
4.2.4.2 String Types..39
4.2.4.3 Sequences ...39

4.2.5 Arrays ..40
4.2.6 Native Types..40
4.2.7 Interfaces ...41
4.2.8 Value Types...41

4.3 IDL Constants..41
4.3.1 Literal Constants..41

4.3.1.1 Integer Literals..41
4.3.1.2 Floating-point Literals ..42
4.3.1.3 Fixed-point Literals ..42
4.3.1.4 Character Literals ...42
4.3.1.5 String Literals ...44
4.3.1.6 Boolean Literals..44

4.3.2 Declaration of Symbolic Constants ...44
4.3.2.1 Operators ..46

4.4 Exceptions ...47
4.5 Interface Declarations ..48

4.5.1 Attribute Declarations ...51
4.5.2 Operation Declarations ..52

4.6 Value Types ...53
4.7 Module Declarations..56
4.8 Scoping ..57
4.9 Concluding Remarks ...60

4.9.1 Interoperability ..60
4.9.2 Using Anonymous Types ..60

4.10 Exercises..61

5 IDL to Java Mapping 65

5.1 Introductory Remarks ..65
5.2 Names ..65
5.3 Mapping for Basic Data Types ..66
5.4 Holder Classes ...67
5.5 Helper Classes ...69
5.6 Mapping for Modules ..70
5.7 Mapping for Constants ..71
5.8 Mapping for typedefs..72
5.9 Mapping for structs ..72
5.10 Mapping for enums ...74
5.11 Mapping for Sequences ...75
5.12 Mapping for Arrays ...75
5.13 Mapping for Exceptions ..75
5.14 Mapping for Interfaces...78

Contents ix

5.14.1 Regular IDL Interfaces.. 78
5.14.2 Local IDL Interfaces ... 80
5.14.3 Abstract IDL Interfaces... 80

5.15 Mapping for Value Types ... 80
5.15.1 Regular Value Types... 81
5.15.2 Abstract Value Types.. 82
5.15.3 Boxed Value Types... 83

5.16 Mapping for anys... 84
5.17 Mapping for in, inout, and out Parameters.. 86
5.18 Mapping for Attributes ... 86
5.19 Mapping for Operations.. 87
5.20 Exercises ... 87

6 Important Elements of the ORB Runtime 89

6.1 Initializing a CORBA Application.. 89
6.1.1 Operation ORB_init() ... 90

6.2 Pseudo Interface CORBA::ORB... 90
6.2.1 Operation list_initial_services() 91
6.2.2 Operation resolve_initial_references() 91
6.2.3 Operations object_to_string() and

string_to_object() ... 92
6.2.4 Thread-Related ORB Operations... 93
6.2.5 Java Mapping of Pseudo Interface CORBA::ORB 93

6.3 Portable Object Adapter.. 97
6.3.1 POA Policies... 98
6.3.2 Overview on POA Functionality .. 99
6.3.3 POA Manager ... 104
6.3.4 Servant Activators .. 106
6.3.5 Servant Locators ... 106
6.3.6 Java Mapping of Interface POA .. 107

6.4 Pseudo Interface CORBA::Object.. 110
6.4.1 IDL Operations of CORBA::Object... 110
6.4.2 Java Mapping of Pseudo Interface CORBA::Object.................. 111

6.5 Pseudo Interface CORBA::TypeCode... 113
6.6 Dynamic Invocation Interface... 114

6.6.1 Pseudo Interface CORBA::NamedValue 114
6.6.2 Pseudo Interface CORBA::NVList.. 115
6.6.3 Pseudo Interface CORBA::Request ... 116
6.6.4 ORB Operations for the Dynamic Invocation Interface................... 118
6.6.5 Object Operations for the Dynamic Invocation Interface 119
6.6.6 Java Mapping of DII-related Pseudo Interfaces and Operations..... 120

6.7 Dynamic Skeleton Interface.. 124
6.7.1 Pseudo Interface CORBA::ServerRequest............................. 124
6.7.2 Java Mapping of the DSI .. 125

6.8 Java Class Servant.. 126
6.9 Exercises ... 128

x Contents

7 A First Example 131

7.1 JDK’s IDL Compiler ...132
7.2 JacORB’s IDL Compiler ...133
7.3 OpenORB’s IDL Compiler..134
7.4 Recommended File Organization ..135
7.5 Implementing Counter Using the Inheritance Approach136
7.6 Implementing the Server Application for the Inheritance Approach...............138
7.7 Compiling the Server Application...140
7.8 Implementing the Client Application ..141
7.9 Compiling the Client Application ...143
7.10 Running the Application..143
7.11 Implementing Counter Using the Delegation Approach144
7.12 Implementing the Server Application for the Delegation Approach145
7.13 A GUI for the Client Application ..147
7.14 Using Different ORBs ...149
7.15 Modules ...149
7.16 Exercises..151

8 Generating Remote Objects 153

8.1 Implementing the CounterFactory Servant ...154
8.2 Implementing the CounterFactory Server ...156
8.3 Implementing the CounterFactory Client..157
8.4 Running the Application..159
8.5 Exercises..159

9 Alternatives for Designing IDL Interfaces 161

9.1 Attributes vs. Operations ...161
9.2 Returning Results From an Operation ...164
9.3 Exercises..168

10 Inheritance and Polymorphism 171

10.1 IDL Definition of DateTimeServer ..172
10.2 Implementing the Inheritance Approach ...173

10.2.1 Implementing TimeServer..173
10.2.2 Implementing DateTimeServer ..173
10.2.3 Implementing the Server Application..174
10.2.4 Implementing the Client Application ..175

10.3 Implementing the Example with the Delegation Approach.............................177
10.3.1 Implementing TimeServer..178
10.3.2 Implementing DateTimeServer ..178
10.3.3 Modifying the Server Application ...179

10.4 An Example for Polymorphism...180
10.5 Exercises..184

11 Implementing Distributed Callbacks 187

11.1 Defining IDL Interfaces ...188
11.2 Implementing the Counter Servant ..188
11.3 Implementing the CBCount Server..190
11.4 Implementing the CounterClient Servant..191

Contents xi

11.5 Implementing the Client Application.. 191
11.6 Further Usages of the Callback Technique... 194
11.7 Exercise... 194

12 Utilizing Value Types 197

12.1 Defining IDL Module PublishSubscribe .. 198
12.2 Implementing Value Type Filter ... 199

12.2.1 Implementing the FilterImpl Class ... 201
12.2.2 Using Class FilterDefaultFactory 202

12.3 Implementing Class PublisherImpl .. 204
12.4 Implementing the Server Application... 205
12.5 Implementing Class SubscriberImpl.. 207
12.6 Implementing the Client Application.. 207
12.7 Exercises ... 209

13 Utilizing Interfaces of the DynamicAny Module 211

13.1 Usage of Anys and TypeCodes.. 211
13.2 DynamicAny API ... 214

13.2.1 DynAnyFactory Interface .. 215
13.2.2 DynAny Interface... 218
13.2.3 DynFixed Interface .. 221
13.2.4 DynEnum Interface .. 221
13.2.5 DynStruct Interface.. 222
13.2.6 DynUnion Interface .. 223
13.2.7 DynSequence Interface... 223
13.2.8 DynArray Interface .. 224
13.2.9 DynValueCommon Interface.. 225
13.2.10 DynValue Interface .. 225
13.2.11 DynValueBox Interface... 226

13.3 Usage of the DynamicAny API in Java.. 226
13.3.1 Implementing Servant and Server Application............................... 227
13.3.2 Implementing the Client Application ... 229

13.4 Exercises ... 233

14 Dynamic Invocation Interface 235

14.1 Dynamic Counter Client ... 236
14.2 Dynamic TimeServer Clients... 239

14.2.1 TimeServer Version 1.. 240
14.2.2 TimeServer Version 2.. 241
14.2.3 TimeServer Version 3.. 242
14.2.4 TimeServer Version 4.. 245
14.2.5 TimeServer Version 5.. 246

14.3 Deferred Synchronous Invocations ... 247
14.4 Exercises ... 251

15 Dynamic Skeleton Interface 255

15.1 Defining IDL Module Bank... 255
15.2 Implementing the Servant ... 256
15.3 Implementing the Server Application... 259

xii Contents

15.4 Implementing the Client Application ..260
15.5 Exercises..261

16 Implementing Different POAs 263

16.1 Counter Example ...264
16.2 Implementing ServantLocator ..265
16.3 Implementing the Server Application..266
16.4 Exercise ...268

17 CORBA’s Naming Service 269

17.1 Basics...270
17.2 IDL Definition of the Naming Service ..272
17.3 Bootstrapping Problem..274

17.3.1 URL Schemes ..274
17.3.2 Standard Command-Line Options ...275

17.4 Binding and Resolving a Name with the Naming Service276
17.4.1 Implementing the Server Application..277
17.4.2 Implementing GUIClient ..278
17.4.3 Starting Naming Service, Server, and Client Applications279

17.4.3.1 Using the JDK ..280
17.4.3.2 Using JacORB ..280
17.4.3.3 Using OpenORB...281

17.5 Utilizing Naming Contexts..282
17.5.1 Server Implementation Version 1..283
17.5.2 Server Implementation Version 2..284
17.5.3 Implementing GUIClient ..285
17.5.4 Running the Application..286

17.6 BindingIterators..287
17.7 NamingContextExt Interface..289

17.7.1 An Example Using the NamingContextExt Interface291
17.7.2 Server Implementation Version 1..291
17.7.3 Server Implementation Version 2..292
17.7.4 Implementing GUIClient ..293

17.8 Concluding Remarks ...294
17.9 Exercises..294

18 CORBA’s Event Service 297

18.1 Event Service Basics ...298
18.2 IDL Specification of the Event Service ...300

18.2.1 Supplier and Consumer Interfaces...300
18.2.2 The Event Channel’s Administration Interface301
18.2.3 Proxy Interfaces ...303

18.3 Using OpenORB’s Event Service..304
18.3.1 Setup and Start of OpenORB’s Event Service304
18.3.2 Using OpenORB’s ES with JDK’s ORB...305
18.3.3 Using OpenORB’s ES with JacORB...306

18.4 Push-Style Publish-Subscribe Example...307
18.4.1 IDL Interfaces for the Example ...307
18.4.2 Implementing the Event Supplier ..308

Contents xiii

18.4.3 Implementing the Publisher Application.................................. 309
18.4.4 Implementing the Event Consumer .. 312
18.4.5 Implementing the Subscriber Application 313
18.4.6 Running the Application... 315

18.5 Exercises ... 316

Appendix A – IDL Grammar 319

Appendix B – IDL to Java: Mapping of IDL Standard Exceptions 325

Appendix C – Naming Service IDL 327

Appendix D – Event Service IDL 329

Appendix E – ORB Product Installation 331

Acronyms 335

References 337

Index 339

1 Preliminaries

This book addresses readers that are interested in the design and development of distributed
software systems relying on the Common Object Request Broker Architecture (CORBA).
CORBA is an industry standard that has considerably changed the way that modern informa-
tion systems are developed. It enables the platform- and programming language-independent
implementation of distributed object-oriented systems and supports the migration of legacy
systems into modern architectures as well. This book is intended in particular for students of
computer science and management information systems in their graduate studies as well as
for practitioners and professional software developers looking for fast access to CORBA
technology and wanting to profit from meaningful code examples. We expect our readers to
be equipped with some basic knowledge on distributed systems and to be well versed in ob-
ject-oriented programming in Java since a detailed introduction into these topics is beyond
the scope of this book. In order to visualize static and dynamic system aspects, we employ
the Unified Modeling Language (UML), which, in its version 2.0, represents the current in-
dustry standard for object-oriented modeling languages.

1.1 Organization of the Book

The book is divided into eighteen chapters. Chapter 1 is dedicated to the present preliminary
remarks that are intended to provide our readers with some general hints concerning working
with the book. Chapter 2 provides some fundamental key concepts—it briefly recapitulates
the object-oriented paradigm as well as some basic knowledge on distributed systems. Sub-
sequently, in Chapter 3, we discuss the most important concepts of the CORBA standard that
lay the foundation for understanding the CORBA-based development of distributed, object-
oriented systems. The central focus of Chapter 4 is the Interface Definition Language
(IDL)—this is the CORBA-specific language for the description of interfaces, which enables
us to define CORBA objects independently of platform and programming language. Chapter
5 provides the link to implementations of distributed systems in a concrete programming lan-
guage. Here, we focus on the explanation of IDL’s binding to the Java programming lan-
guage. In Chapter 6, we introduce a rather technical part of the CORBA specification,
namely the elements of the ORB runtime system, which include the Object Request Broker
(ORB) itself, the Portable Object Adapter (POA), the Dynamic Invocation Interface (DII),
the Dynamic Skeleton Interface (DSI), and others.

In Chapter 7, we start our “hands on” work with CORBA by presenting a first example and
describing how it can be deployed and run using the three different ORB products we employ
throughout the book. Each of the subsequent chapters contains one or more practical exam-
ples that can be executed and tested by our readers. In Chapter 8, we demonstrate how to cre-
ate remote objects in a distributed system by using an implementation of the well-known
“Factory” design pattern. Different design alternatives to be considered in the process of
specifying an IDL interface are the special focus of Chapter 9. In Chapter 10, we provide a
closer look at the powerful object-oriented principles of inheritance and polymorphism in the

2 1 Preliminaries

context of CORBA and show how to use the so-called inheritance approach as well as the so-
called delegation approach. Distributed Callbacks, the focus of Chapter 11, are a technique
that can be very useful if clients and servers have to change their roles temporarily. In Chap-
ter 12, we present an example that makes use of the CORBA concept of value types, which
allows passing data type instances to remote objects using “by-value” instead of “by-
reference” semantics. An enormous degree of flexibility in the development of CORBA ap-
plications stems from the DynamicAny API and the Dynamic Invocation and Dynamic
Skeleton Interfaces, which free CORBA developers from static type restrictions and are illus-
trated by examples in Chapters 13 through 15. Working with different configurations of the
Portable Object Adapter is the topic of Chapter 16. The last two chapters, Chapter 17 and 18,
are dedicated to two CORBA services that enhance the basic functionality offered by the
ORB runtime system. While the first service, CORBA’s Naming Service (NS), is fundamen-
tal and is required in almost any real-world CORBA application, the second, CORBA’s
Event Service (ES), can be used to realize an event-based, decoupled and asynchronous
communication between the elements in a distributed system.

Due to the enormous scope of the CORBA specification, we have attempted to avoid repeti-
tion and redundancy in this book wherever possible. Consequently, the best way to gain a
thorough understanding of the book’s topic is through a sequential study approach from the
beginning to the end. Since chapter subjects are cumulative, basics that were already intro-
duced are prerequisites for understanding the discussions in later parts of the book. Possible
solutions to the exercises can be found on the World Wide Web (WWW) on the book’s home
page (see the following section).

At the end of each central chapter, we have compiled a number of exercises that enable read-
ers to examine their learning success independently and to develop and test further ideas re-
lated to the covered subjects.

1.2 Additional Material

The central reference for the explanations in this book is the CORBA specification version
3.0.3 of the Object Management Group (OMG), which can be downloaded free of charge
from the OMG’s website at http://www.omg.org. The source code for the example
programs, as well as further information and updated material for this book, can be found at
the book’s website http://www.wifo.uni-mannheim.de/CORBA. Under this URL,
one also has the possibility to give feedback, send in corrections, or submit any other sugges-
tions for improvement.

To supply interested readers with a comfortable possibility to compile and run the example
programs on their own, we tested each of the examples with three different Object Request
Broker products available free of charge. The first one is the ORB that is part of the Java De-
velopment Kit (JDK). The second one is the OpenORB product and number three is the prod-
uct JacORB. Detailed information on the possibilities for downloading, installing, and cus-
tomizing the software can be found in Appendix E.

 1.4 How to Read This Book 3

1.3 Conventions Used in This Book

At this point, we want to briefly mention the fonts we use in the book and explain their
meanings. These font conventions are simple and also used by numerous other authors. In
addition to the “normal” Times New Roman font, we use other font types that have special
semantics. For the examples and for code fragments, we use the Courier font. Technical
terms or specific identifiers are printed in Times New Roman italics. This, however, only
holds for the complete terms, not for their abbreviations.

Very often, we encounter misunderstandings with respect to the usage of the terms operation
and method. Therefore, already at this early stage, we want to discuss their differing seman-
tics. The Object Management Group, originator of the CORBA standard, uses the term op-
eration in the context of the specification of interfaces with the help of the Interface Defini-
tion Language in order to describe the behavioral aspects of an object. In the Java commu-
nity, on the other hand, the term method is used for the member of a class declaration that,
typically, implies the existence of a concrete implementation of such a behavior in the form
of Java statements. We strictly adhere to these definitions, attempting to make it immediately
clear to our readers whether the respective reflection takes place on CORBA’s IDL level or
on the level of the Java programming language.

1.4 How to Read This Book

It is not necessary to read this book from front to back. One might want to start writing first
test applications very soon. In that case, it is recommended to read the introduction and the
overview of CORBA’s concepts in Chapters 2 and 3, have a glance at the Interface Defini-
tion Language basics in Chapter 4, and then begin concrete CORBA development with the
examples in Chapter 7. The nature of Chapters 5 and 6 is more that of a technical specifica-
tion. They may be consulted occasionally during program development while working
through the examples in Chapters 7 through 18.

2 Introduction

Today, the construction of distributed systems based on objects is the most dominant ap-
proach in the area of software development, especially when it comes to enterprise informa-
tion systems. In principle, various fundamentally different base technologies can be em-
ployed in this context in order to enable communication in distributed systems—due to their
infrastructural function, they are denoted as middleware. In most cases, however, technolo-
gies prevail that rely on the object-oriented paradigm as their basis and that represent an ex-
tensive further development of the traditional concept of the so-called Remote Procedure
Calls (RPCs). Meanwhile, modern programming languages like Java, the language that we
concentrate on throughout this book, offer built-in language constructs for distributing ob-
jects. But, normally, these cannot comply with the complexities of systems designed for
large-scale enterprise distributed applications. Among the current highly successful and most
advanced technologies in the area of middleware, we want to mention in particular

Microsoft’s vendor-specific .NET-Standards, e.g., the Distributed Component Object
Model (DCOM) or the Component Object Model Plus (COM+), respectively,

language-specific standards like the specifications of the Java 2 Platform, Enterprise
Edition (J2EE) that are based on Sun Microsystems’ Remote Method Invocation
(RMI), and

above all, the vendor- and platform-independent architecture for distributed objects
that the Object Management Group (OMG) describes in its Common Object Request
Broker Architecture (CORBA) standard.

The purpose of this book is to provide a well-founded introduction into the CORBA architec-
ture and to demonstrate the numerous advantages of CORBA. One characteristic feature is,
for example, that CORBA enables us to integrate distributed objects to an application system
that is implemented on different hardware architectures and operating systems, uses different
ORB products, and defines its objects in different programming languages. If modern mid-
dleware technology is utilized, these objects can be distributed worldwide, opening up new
dimensions of software development where objects are designed and tested spatially separate
from each other and then are executed on remote nodes in a computer network.

Before we go into the concepts of the CORBA standard in more detail in Chapter 3, we want
to summarize briefly some basic concepts of the object-oriented paradigm that are essential
for the work of the OMG. Due to its wide acceptance and distribution, we refrain from giving
full details and assume that readers are fundamentally acquainted with object-oriented prin-
ciples. If this should not be the case, preparatory study of an introductory textbook on this
subject is recommended. The same holds true for the topic of distributed software systems,
the main characteristics of which are examined more closely in Section 2.2. Supplied with
these foundations, readers should be well prepared for the subsequent examination of the
fundamentals of CORBA technology.

6 2 Introduction

2.1 Object-Oriented Paradigm

At the beginning of this section, we briefly but concisely present the most relevant basic con-
cepts of the object-oriented approach. Although the roots of object orientation can be traced
as far back as 1967 when SIMULA 67, a language for system design and simulation, was
created, the concept did not become successful in the area of programming languages before
the 1980s with Smalltalk and C++. It was not until the end of the 80s and the beginning of
the 90s that object orientation began its advance in the early phases of the software lifecycle,
namely analysis and design. Since then, object technology has even been applied to modeling
purposes within the scope of business engineering tasks and, in the 1990s, became the domi-
nating paradigm for system modeling and software development. The continuing success of
Java as a programming language and UML as a modeling language are evidence of its infil-
tration into the mainstream. The UML standard, for example, serves as the foundation of
several up-to-date model-driven software development approaches, such as OMG’s Model
Driven Architecture. Also, component technology, which is quite popular at the moment, is
conceptually still built upon the ideas and technologies of object orientation.

Object technology is based on the assumption that human cognition relies on the perception
of reality in the form of objects—objects that have characteristic properties and show spe-
cific behavior, that are related to each other, and that can interact amongst themselves. From
an object-oriented software development perspective, an object is the IT-suitable representa-
tion of a real-world object obtained by applying the principle of abstraction. It need not nec-
essarily exist physically but may also be of a conceptual nature. Technically seen, the object
encapsulates a number of attributes in the form of variables whose set of values determine
the actual state of the object as well as a number of operations or methods that describe the
dynamic behavior of the object and supply its functionality in the form of executable state-
ments.

To the outside, the object makes its functionality available via a public interface containing
the signatures (operation names and parameter types) and the return types of the operations
that may be invoked through other objects. This principle is central for the approach chosen
by CORBA’s designers and is discussed in detail later. The functionality of the entire object-
oriented system is realized through the cooperation of the objects the system encompasses.
To that end, the objects communicate by exchanging messages. A message from a sender ob-
ject to a receiver object results in the invocation of one of the receiver’s methods. This ex-
change of messages requires that at least the sender object “knows” the receiver object. To
do so, the objects can, for example, be connected through an association or they can be re-
lated in an aggregation where one object is part of the other object, the so-called whole.

Objects that are characterized by the same properties and the same behavior are grouped into
classes. A class is a description of an object type. It serves as a template for the generation of
instances of that type; objects are instantiated from the class. For all its objects, the class
specifies the attributes that the objects contain and defines the operations that can be invoked
on these object data.

Encapsulation of semantically related data and functions in objects is a feature that markedly
distinguishes the object-oriented approach from the classical structured software develop-
ment technologies. It encourages principles like modularization, information hiding, and

 2.1 Object-Oriented Paradigm 7

programming by contract. With the last two principles, the separation of interface and im-
plementation is addressed. An object can only be accessed via its precisely defined public in-
terface, visible from outside the object in such a way that no knowledge on the implementa-
tion of the object’s attributes and operations by internally encapsulated data structures and
algorithms is needed and the inner structure of the object is hidden to the outside world. In
that sense, the interface serves as a contract between the object and its environment concern-
ing the object’s functionality. If that contract is observed, the data structures and the meth-
ods, i.e., the implementation of the operations, can be modified without any side-effects or
influences on other parts of the system or on the users of objects of the respective class.

A core concept of the object-oriented approach is the generalization principle. With its ap-
plication, we can build more general superclasses from existing classes that are now called
subclasses. Conversely, we generate more specialized classes from existing classes through
specialization. A subclass inherits all the properties and the behavior of its superclasses and
can specify additional characteristics. According to the substitution principle, every object of
a subclass is also an object of its superclasses. This implies, in particular, that a subclass ob-
ject can be used in any context where a superclass object is expected. On the programming
language level, the principle of generalization or specialization is implemented via the con-
cept of inheritance, where a subclass inherits the interfaces and the concrete implementations
of its superclasses. But, in addition, it is allowed to redefine inherited methods in subclasses
as long as their interface remains unchanged. If a class is provided with more than one direct
superclass—direct meaning “immediately above it in the class hierarchy”—the term multiple
inheritance is used. Otherwise, we speak of single inheritance. The most central advantages
of generalization/specialization or inheritance, respectively, are avoidance of redundancies
and reduction of complexity.

Polymorphism is one of the most powerful mechanisms of object orientation. It allows that
sending a message in order to invoke a certain operation results in the execution of different
methods, depending on the class type of the receiver object. The executed methods, however,
must all implement the respective operations. It is mandatory that the class of the receiver
object is part of a class hierarchy and that, during specification of the message, an object of
one of the superclasses was expected as receiver. Recall that the receiver object can be used
in any invocation on a superclass object and note that all the possibly executed methods must
implement the respective operation of the superclass. By so-called late binding, the assign-
ment of the message to a concrete method is deferred until run-time of the system.

In the past, the aspect of reusability was very often mentioned as a central objective of the
object-oriented approach and as one of the main arguments for its application. It is assumed
that the basic principles of the object-oriented paradigm, such as encapsulation, information
hiding, and inheritance, are especially favorable to software reuse. Classes can be organized
in class libraries and can be repeatedly imported into the development of applications in two
different ways. One possibility would be black box reuse, where a class is employed solely
through accessing its public interface. On the other hand, with white box reuse, a new class is
defined through the inheritance of not only the interface but also the implementation details
from an existing class.

From a technical point of view, the development of distributed object systems poses a con-
siderably higher challenge in comparison to the development of a monolithic object-oriented

8 2 Introduction

program executed in a single address space on a single host. Having recalled the basic prin-
ciples of object orientation, we can now take a closer look at the specific challenges con-
nected with the development of distributed systems and the specific features that characterize
them. On this basis, it is then easier to comprehend CORBA’s dedicated object model and
understand the technical concepts that are chosen in the standard. Both are introduced and
discussed in Chapter 3. We see that, in comparison to the object model described in this sec-
tion, CORBA’s object model is partially reduced and somewhat modified in order to adapt it
to the special requirements of a distributed system world as CORBA sees it.

2.2 Distributed Systems

Generally speaking, a distributed system consists of a number of software components that
are more or less autonomous and reside and can be executed on separate computers (hosts)
that are linked by a computer network. The overall system functionality is realized through
the integrated interaction of the individual components. Typically, the distributed compo-
nents do not share a common storage space and their cooperation is coordinated by decentral
administration software.

According to Linnhoff-Popien [Linn98], the top three layers of the well-known ISO OSI ref-
erence model have the highest relevance to the implementation of distributed systems. In her
view, general reasons for distributed system developments were historical circumstances
such as

the performance explosion of processors,

the development of faster networks,

the advances of software technology, and

the renunciation of hierarchical system structures.

More specifically, Emmerich [Emme00] sees the existence of typical global, non-functional
requirements as the most frequent reason for the decision to construct a distributed system
instead of implementing a centrally organized system. Examples of such requirements are

scalability,

openness,

heterogeneity, and

fault tolerance.

Scalability denotes the ability of a system to adapt its performance flexibly to increased de-
mands that exceed the processing power of a single computer. To reach that goal, it is neces-
sary to partition the system into different components that reside on separate hosts in the
network and that are able to communicate with each other. It is crucial to ensure that the
overall performance remains acceptable when the number of components is drastically in-
creased.

Openness of a system is indispensable if it is embedded in a higher-level system or in an en-
vironment and has to interact with components from this environment. These components

2.2 Distributed Systems 9

from the system’s environment are often administrated by remotely located autonomous or-
ganizational units, making the distributed system approach necessary, as, for example, in the
computer support of a supply chain between manufacturers and retailers within the scope of
Supply Chain Management. In a narrow sense, by an open distributed system, we mean a set
of autonomous subsystems whose specifications (interfaces) have been disclosed so that they
can cooperate in coordination to work on a joint task. To that end, these subsystems are con-
nected via some communication network.

Closely related to openness is the problem of heterogeneity, i.e., the presence of different
hardware and software environments that have to be integrated. Especially in the IT domain,
technology changes in very short cycles and, due to cost and time restrictions, it is rarely pos-
sible or even sensible to re-implement existing and working system components repeatedly
with the help of the most recent technologies. Instead, we have to design a distributed system
in such a way that legacy systems can remain on their accustomed hard- and software plat-
form but that it is nevertheless possible to integrate them with new components.

In special cases, the need may arise to increase the fault tolerance of the system by installing
critical system components redundantly on more than one computer. Then, even if one com-
ponent fails, some other component of the distributed system can take over the task and the
system’s service is still provided.

One additional desirable goal during the design of distributed systems is hiding the distribu-
tion aspects from the system users so that they perceive the distributed system as one entity
and cannot distinguish it from a single, integrated computing facility. It is equally desirable
that application programmers developing problem-specific system components should not be
bothered with the complexity resulting from the system’s distribution so that they can, for the
most part, proceed as they do during implementation of one monolithic application. These
aspirations resulted in the introduction of a dedicated software layer in distributed systems
for which the term middleware, previously mentioned, has been coined. The middleware
layer is inserted between the network operating system and the application components. Its
tasks are, in particular, encapsulating distribution and heterogeneity aspects. There are sev-
eral different types of middleware:

classical, transaction-oriented middleware that enables distributed transactions—with
typical products such as IBM CICS or BEA Tuxedo,

Message-Oriented Middleware (MOM) that mainly enables asynchronous message
passing in distributed systems—with typical products such as IBM MQSeries or DEC
MessageQueue,

specialized middleware approaches, for example, to support mobile agents, or

RPC-based approaches and the related object-oriented middleware that enables re-
mote procedure calls or invocations of operations on remote objects. Products in this
category implement the above-mentioned technologies RMI/J2EE, DCOM/COM+,
and CORBA.

Due to their special relevance for the development of today’s middleware technologies, we
briefly discuss the basic principles of Remote Procedure Calls (RPCs), which were intro-
duced in the 1980s and were widely used. Important representatives of that technology were,

10 2 Introduction

e.g., SUN RPCs as well as Distributed Computing Environment (DCE) RPCs. For the appli-
cation, an RPC appears like a local function call, which, however, in reality is not executed
locally. Instead, the values of the procedure’s parameters are sent via the network to a remote
application, the so-called server, which executes the procedure. If the procedure generates re-
turn values, they are sent via the network back to the calling application, the so-called client.
When a client performs a RPC, the parameter values of the call are packaged into a request
package by a process called marshaling. They are then sent on the transport layer of the net-
work to the server, typically with the help of the User Datagram Protocol (UDP) or the
Transmission Control Protocol (TCP). Marshaling brings the parameters into a format suit-
able for transportation over the network. The request (the remote call) itself consists of a
RPC message that contains the name of the remote procedure and the list of parameters; it is
transported embedded in a UDP or TCP package. After the arrival of the request on the
server side, an unmarshaling takes place, which unpacks the parameters, and, consecutively,
the procedure is executed. As soon as the execution is terminated, the return values—if
any—are marshaled into a reply package that is then sent back to the client. RPC uses syn-
chronous communication; therefore, the client is blocked and waits until the remote proce-
dure returns. The reply is, again, a RPC message, which, in addition to a number of return
values, can also contain an error status. Figure 1 schematically demonstrates the course of a
basic RPC. In the end, RPCs represent the basic principle also employed during CORBA
communication. However, there, the RPC principles are performed in an object-oriented
manner and they are implemented with considerable extensions. At this point, it should be
noted that CORBA supports not only synchronous but also asynchronous communication be-
tween clients and servers.

In the context of middleware’s role for distributed systems, Emmerich identifies eight differ-
ent forms of transparency, layered on top of each other, that a distributed system should ide-
ally possess:

access transparency and location transparency as the basis,

migration transparency, replication transparency, and concurrency transparency on
the next level, and

scaling transparency, performance transparency, and failure transparency on the
highest level of the layered transparency model.

Client ServerRequest

op name

arg 1

arg 2

... Reply

return 1

return 2

...

Evaluate
Procedure

Figure 1: Execution of a RPC ([Bolt02], p. 7)

 2.2 Distributed Systems 11

One of the most basic forms of transparency of distributed systems is access transparency.
This term expresses the objective that the interfaces for service requests are identical in the
local as well as in the remote case so that the system’s services are perceived indistinguish-
ablely. Regardless of whether or not a server component resides on the same host as the cli-
ent component or is installed on a remote host in the network, the client component uses the
same interface to access services of the server component.

Access transparency is complemented by location transparency. This characteristic says that
the physical location of server components need not be known to the client components. Pro-
grammers of service requesting components do not have to be concerned with where the ser-
vice providing components are installed on the network since the identification and discovery
of these components is suitably supported by the middleware in use.

On the basis of the first two dimensions of transparency, one can achieve the so-called mi-
gration transparency. It allows the movement of a service-providing component from one
host to another host within the system without needing to inform the service-requesting com-
ponent of this or even modifying its implementation. Access transparency and location trans-
parency are essential for this type of transparency since transparent migration may not change
the server interface as the client sees it nor may the physical location of the server compo-
nents be of any relevance.

One technique to increase reliability and optimize performance of the system and to enable
scalability and fault tolerance is the replication of components—the generation of component
replicas whose states are synchronized with that of their originals. In order to conceal this
technical measure, the so-called replication transparency is the aim. In the case of its realiza-
tion, clients or client programmers need not know whether a requested service is provided by
the original server component or by a replica of the server. Again, access transparency and
location transparency are preconditions for this type of transparency.

A third form of transparency, based on access and location transparency, is concurrency
transparency. It is defined as the concealment of the possibility that several clients concur-
rently request services of a component from users and application programmers. How the
middleware employed controls concurrency and ensures integrity of the commonly used
components has no relevance for the user or the application programmer.

On the highest level of the layered transparency model, we find scaling transparency and
performance transparency. Both forms are rather similar. The first implies that users or pro-
grammers need not know how scalability of the system as a whole is reached through inser-
tion or removal of components; it is allowed to expand or to shrink in scale without changes
being expected from them. The second form is related to single requests and hides the details
of possible reactions and reconfigurations of the system in order to guarantee high system
performance as loads vary. Failure transparency is also defined on the highest transparency
level. It is a system characteristic that hides failure of components from users and program-
mers and lets them complete their tasks or developments. The last three transparency forms
are supported by, or are even only possible through, concurrency transparency and replication
transparency.

3 Concepts of the CORBA Standard

3.1 Object Management Group

At the beginning of this chapter, we discuss and classify the CORBA standard and introduce
the Object Management Group, which is the originator of the CORBA standard. The OMG is
a consortium of hardware manufacturers, software developers, network operators, and soft-
ware end-users. In 1989, it was founded by eight companies (3Com, American Airlines,
Canon, Data General, Hewlett-Packard, Philips Telecommunications, Sun Microsystems, and
Unisys); but, after a few months, it became an independent international organization, open-
ing membership to other firms and institutions. At the moment, the OMG has approx. 470
members: software and hardware vendors, companies from various industries, information
system users, consulting firms, and research laboratories. The core of OMG’s work is the
definition of an architecture for the distribution and cooperation of object-oriented software
components in heterogeneous, distributed environments. The OMG promotes modular soft-
ware development, i.e., the separation of an application into components, sets of objects that
collaboratively accomplish a specific task. As opposed to most other standards organizations
(for example, the Open Software Foundation (OSF)), the OMG does not produce software.
On the contrary, standards (guidelines, specifications, and architectural models) are defined
that encompass basic requirements concerning applications and their components to which
all standard-compliant software products must adhere. Compliance with the specifications
assures that—without any modifications of program code—applications can be ported to dif-
ferent hardware architectures and operating systems. Moreover, programs developed inde-
pendently of each other, written in different programming languages, and run on different
hardware platforms in different locations can interoperate and exchange messages.

3.2 Object Management Architecture

In the Object Management Architecture (OMA) Guide, OMG’s first published central docu-
ment, aims and procedures of the OMG as well as its basic object management architecture
are recorded. On that basis, the Core Object Model is described; it is OMG’s object model
specifying the conceptual requirements any system has to adhere to if it is to be standard-
compliant. One central aspect of the OMA is the definition of interfaces, the externally visi-
ble functional properties of objects. For that purpose, the OMG provides its own Interface
Definition Language (IDL), which is used in order to describe those properties in a standard-
ized and implementation-independent way. Various programming languages (e.g., C++ and
Smalltalk but also non-object-oriented languages such as COBOL) can be employed to im-
plement an object. For those languages, the OMG defines language mappings, which specify
how the interfaces and data structures declared in IDL are to be converted into constructs of
the respective programming language. The core of the Object Management Architecture is
the Object Request Broker (ORB), which the CORBA standard defines. It is the communica-
tion component responsible for locating and initializing objects as well as for managing

14 3 Concepts of the CORBA Standard

communication between client and server. Objects use the ORB to communicate with other
objects in a distributed environment. Like a mail distributor, it enables message passing to a
destination host and, from there, to the receiver object. In addition to the ORB, four catego-
ries of application components are described by OMA. They are differentiated with respect to
the way the services they provide are suitable to support a specific application profile (see
Figure 2):

CORBAservices™ (a.k.a. CORBA Services): These are general-purpose, system-re-
lated extensions of the core functionality of an ORB that are relevant to the basic op-
eration of a distributed application. If required, application programmers can fall back
on these services, for example, if the application needs additional functionality such
as transactions, security, or persistence.

CORBAfacilities™ (a.k.a. Horizontal CORBA Facilities): This notion encompasses
advanced, more application-specific functionality affecting essential parts of an ap-
plication, for example, user interfaces, document processing, or print services. In
comparison to CORBA Services objects, these objects reside at a higher level of ab-
straction.

Life Cycle

Time
Con-

currency
SecurityEvents

Naming ...Persis-
tence

Trader

CORBAservicesTM

Application
Objects

CORBAdomainTM Objects

Object Request Broker (ORB)

CORBAfacilitiesTM

Figure 2: The Object Management Architecture

3.4 Elements of the CORBA Standard 15

CORBAdomain™ Objects (a.k.a. Domain CORBA Facilities): They denote partial
solutions for specific application domains or industries that are standardized with re-
spect to their basic construction principle. Examples are domain interfaces in finance
or telecommunication.

Application Objects: The actual applications, concrete software products that are not
standardized by the OMG (for example, a web server, a text processor, or a CAD
program), fall into this category. Also, all the objects in the example programs that
we discuss later are application objects.

In separate standards, the OMG describes the functionality of the components in these
classes and defines the interfaces of their objects. Concrete implementations are left to appli-
cation programmers. However, in some cases, standard solutions are available off-the-shelf.

3.3 Common Object Request Broker Architecture

The Common Object Request Broker Architecture is the quintessence of the specifications of
OMG’s Object Management Architecture. It is a technical communication infrastructure for
applications built upon distributed objects. Based upon the Object Request Broker, the
CORBA architecture provides the fundamental framework enabling object-oriented Remote
Procedure Calls in order to support communication and cooperation of the objects distributed
in a system. In the following, the principal elements of CORBA are discussed in more detail.

3.4 Elements of the CORBA Standard

It is the aim of the following sections to present in turn the constituent parts of the CORBA
standard and to briefly discuss their scope of functions.

3.4.1 Object Request Broker

The Common Object Request Broker Architecture specifies the basic services for object
communication. We have already mentioned that the main features of the mechanism rely on
Remote Procedure Calls. In addition to the static interface descriptions that are also used by
RPC, a highly flexible Dynamic Invocation Interface (DII) is provided that even enables
binding to new servers at run-time. The Object Request Broker constitutes the architecture’s
communication component and is sometimes denoted as the “object bus” (in the style of a
PC bus with its slots) or, somewhat simplistically, “mail distributor”. In no way does the
standard determine how a concrete ORB implementation should be realized nor does it give
any recommendations. Conceivable approaches would be a realization of the ORB by means
of runtime libraries or of daemon processes, with the help of a central server, as a part of the
operating system, or by combinations of these options. The most widely-used approaches
that we know of combine runtime libraries with daemon processes.

Basically, it is the task of the ORB to establish client/server relationships between objects.
Here, a client is an object that intends to invoke an operation on another object. The imple-
mentation of an object—in OMG’s terminology also called servant—is a batch of program

16 3 Concepts of the CORBA Standard

code that, among other things, determines which actions are to be executed when an object
operation is invoked, i.e., it defines the corresponding object method. Normally, several ob-
ject implementations are integrated into one executable program, which then acts as a server.
A client can invoke a method of a server object residing on the same machine or installed on
another host somewhere on the network. The ORB accepts the invocation call and is then re-
sponsible for finding the object that offers the corresponding method, delivering the call’s
parameters to the respective object implementation, and returning potential invocation re-
sults. Should client and server employ differing data formats, the ORB also has to take over
the conversion of data. The client need not have any knowledge of the location where the in-
voked object is stored, the programming language in which it is implemented, the operating
system or the hardware of its host, or any other aspects not directly part of the object’s inter-
face. Thus, CORBA-based applications are able to communicate with each other across the
boundaries of the utilized computer architecture and the available software products. This
ability, however, implies that at least one CORBA-compliant product exists for each in-
volved platform.

It does not mean, though, that an application could, for example, be developed under Unix
and that the generated binary code could be executed on different platforms, i.e., computer
architectures and/or operating systems. Platform independence has to be understood from a
“distributed perspective”, meaning that the entire application may be composed of distributed
components implemented in different languages and executed on different platforms. In that
case, it is irrelevant which CORBA-compliant products were utilized to develop the individ-
ual components.

This type of independence requires that

for each participating computer architecture and its operating system, a CORBA-
compliant product exists,

for the programming language used, an IDL mapping is defined, and

the employed product is at least CORBA 2.0-compliant since CORBA 2.0 was the
version that introduced Interoperable Object References (IOR) as well as the Internet
Inter-ORB Protocol (IIOP) into the standard. Both are necessary conditions for the in-
teroperability discussed above; they are dealt with in more detail in Section 3.7.

3.4.2 Object Adapter

Technically seen, an object adapter is the connecting link between the ORB and the proper
object implementations. From a logical perspective, it connects CORBA objects that are
specified by means of IDL to their implementations, which were written in a certain pro-
gramming language. When the ORB receives a client request, it routes this request out to the
ORB on the server side. Subsequently, the server-side ORB transmits the request to an object
adapter. The object adapter then has to determine to which object implementation the request
has to be forwarded. During the concrete implementation of a distributed object, one has to
decide on a certain object adapter. Since its interface to the ORB core depends on the core,
problem-free porting of objects from one ORB to another requires that the same object a-
dapter exists on the new core.

3.4 Elements of the CORBA Standard 17

Within the framework of the CORBA specification, up to now, two object adapters were
standardized:

the Basic Object Adapter (BOA) and

the Portable Object Adapter (POA).

The Basic Object Adapter was the first object adapter specified by the OMG. But this speci-
fication was heavily criticized. Due to the BOA’s partially imprecise specification, problems
concerning porting of existing applications to other ORBs often occurred. Additional com-
plications arose because the specified functionality seemed not extensive enough to cover all
potential application purposes, so each vendor supplied his own additional functionality.
This was the motivation for replacing the BOA specification in CORBA 2.2 with the Port-
able Object Adapter, which should avoid and solve portability problems. Further, more spe-
cialized object adapters can exist alongside the POA. They are required if an external system
wants to administer its objects by itself but, on the other hand, wants to admit other systems
access to these objects. An object-oriented database system may serve as an example of such
an external system.

With the specification of POAs, the OMG has established a fine-grained taxonomy that for
the first time provides more precise definitions of, among others, the notions of client,
server, CORBA object, servant, object identity (object ID), and object reference. In short,
these terms can be characterized in the following way:

Client
A computational context that invokes (remote) operations on an object and, for that
purpose, accesses an object reference for that object.

Server
A computational context in which the implementation of a CORBA object exists. On
the operating system level, it is usually realized as a separate process.

CORBA Object
A CORBA object is a virtual entity supplied with an identity, an interface, and the
corresponding implementation. From a client’s view, a CORBA object can be identi-
fied via an object reference containing, among other things, the object’s identity. The
server’s view of the object’s identity is managed by the POA and is implemented by
means of a servant.

Servant
A servant is a programming language entity that exists in the context of a server and
implements the IDL interface for one or more CORBA object. A servant is responsi-
ble for handling the requests of a client.

Object Identity
In the context of the POA, the notion object identity is used to identify a certain
CORBA object. Object identities are normally managed by the POA. It is also possi-
ble that they are specified during implementation of a server application. Object IDs
are hidden from clients, encapsulated by object references.

Object Reference
An object reference is the link between clients and servers. It contains all the informa-
tion needed to invoke an operation on a remote object. Thus, a client must have an

18 3 Concepts of the CORBA Standard

object reference to make invocations on a CORBA object because the object refer-
ence encapsulates the location details of that object. The Interoperable Object Refer-
ence includes the Internet Protocol (IP) address, the port number as well as a multi-
tude of additional details, e.g., on the object ID or the POA’s identity.

The distinction between clients and servers is a consequence of the roles that the different
components adopt. “Pure” client applications only use the functionality provided by other
components and do not offer any functionality on their own. “Pure” server applications make
various services available without having to rely on the functionality of other components.
Hybrid components can act as clients and as servers at the same time. That is, on the one
hand, they provide certain services that may be used by other components. And, on the other,
they are dependent on the functionality of other components. All CORBA applications that
offer services over their interfaces and that simultaneously use services of the standardized
CORBA infrastructure automatically fall into the category of “hybrid” applications.

3.4.3 Interface Definition Language

For the development of flexible distributed applications, especially for heterogeneous plat-
forms, a strict separation between interface and implementation of objects is needed. First of
all, objects are therefore defined in a dedicated language, the Interface Definition Language,
which is also specified by the Object Management Group. The IDL is used to define the in-
terfaces of objects. For the specification of object interfaces, only the externally accessible
attributes and operations are of central interest—similar to the public declarations in a
Java or C++ class. Attributes or methods that are merely destined for internal usage may not
be part of an IDL definition. Using a programming language- and platform-specific IDL
compiler, the IDL interfaces have to be translated as we describe in Section 3.5. The imple-
mentation of the interface’s operations can later be carried through, as usual, in the selected
programming language. In the following sections, we utilize the IDL notation for the specifi-
cation of types, exceptions, and operations. A more detailed description of IDL is given in
Chapter 4.

3.4.4 Interface Repository

The Interface Repository (IR) has to perform the task of storing the interface definitions of
CORBA objects. The metadata stored within the IR can be accessed at run-time in order to
generate dynamic invocations using the Dynamic Invocation Interface and/or the Dynamic
Skeleton Interface. The IR is itself a CORBA server that has to be activated separately from
the client and server processes and can be located anywhere in the network. The IR is de-
scribed by a set of IDL interfaces determining how the IR can be accessed remotely.

Putting an IDL file into the IR leads to a decomposition process that inserts the elements con-
tained in the IDL file into a parse tree. The different constructs, like modules, interfaces, op-
erations, etc., are reflected by corresponding interfaces defined in the IR specification. In or-
der to explore the metadata information, a client might need to traverse the parse tree using
dedicated operations for this purpose.

3.4 Elements of the CORBA Standard 19

In order to keep track of the different named IDL data types, the IR uses Repository Identities
(repository IDs), which are unique type identifier strings. However, repository IDs are also
generated if no IR is used because the IDL compiler generates them as it produces the stub
and skeleton code for a CORBA application (cf. Section 3.5).

In principle, different ways of obtaining initial access to an Interface Repository exist. Irre-
spective of the chosen type of access, it is always the purpose to determine how a CORBA
object is structured. For example, if a client has obtained an object reference to a CORBA
object but has no information on the operations or attributes supported by that object, it can
acquire that information at run-time. By calling the respective operation, the client obtains
the description of the interface belonging to the reference passed to the call. Subsequently,
the client can analyze that result in more detail, e.g., by inquiring which arguments a certain
operation expects, what their respective types have to be, or whether a return value is to be
expected. Thereafter, the client can make use of the Dynamic Invocation Interface in order to
send a request to the object.

Note that the IR is usually realized as a stand-alone component and not all available ORB
products provide this component. Anyway, for many CORBA applications an IR implemen-
tation is not needed at all.

3.4.5 Dynamic Invocation Interface

There are two ways that a client can invoke server operations: static or dynamic. In both ca-
ses, the client has to know the object reference of the corresponding CORBA object. The
server cannot distinguish a static from a dynamic invocation. While the static interface is
automatically generated by the IDL compiler, programmers have to generate a dynamic
method invocation by themselves via the Dynamic Invocation Interface. Should the IDL in-
terface not be available, programmers have to rely on the interface definition stored in the In-
terface Repository.

Compared to dynamic invocations, we strictly prefer static invocations since they are

faster,

more manageable (due to the known IDL definition),

more robust (due to better type-checking abilities), and

easier to implement.

At run-time, the Dynamic Invocation Interface enables the client to generate invocations that
are subsequently transmitted to the server. The DII supports synchronous (default), deferred-
synchronous, and asynchronous communication modes. Synchronous communication is ini-
tiated by means of the operation invoke(). In order to communicate in deferred-synchro-
nous mode, the operations send and get_response() (or poll_response(), re-
spectively) have to be invoked. Since both statements can appear at any place in a program
(where, obviously, send must be executed prior to get_response()), the results of an
invocation already carried out can be retrieved and evaluated later. The third alternative is the
invocation of the operation send_oneway(). With that operation, asynchronous invoca-

20 3 Concepts of the CORBA Standard

tions are enabled. A detailed description of the DII is provided in Section 6.6 and Chapter 14
contains implementation examples in Java.

3.4.6 Dynamic Skeleton Interface

The Dynamic Skeleton Interface was introduced in CORBA 2.0. Analogous to the DII, it
provides a run-time mechanism for server-side management of components whose IDL defi-
nitions are not known during implementation and compilation of the server. The DSI pro-
vides an interface that can handle a certain class of requests at run-time. It analyzes the in-
coming messages with respect to target object and method and tries to determine the receiver
of the message. With the help of the DSI, a server can execute the request of a client dynami-
cally such that the client is unable to notice any difference in comparison to static execution.
In order to do so, the server uses a skeleton—an ORB component that assists its object
adapter in directing the invocation to the right operation of a servant (cf. Section 3.5). A de-
tailed description of the DSI is provided in Section 6.7 and Chapter 15 contains an imple-
mentation example in Java.

3.4.7 Implementation Repository

One component of CORBA repeatedly mentioned in the standard but not specified in detail
is the Implementation Repository. Its task is to administrate different server implementations.
Should, at the start of a client, the corresponding server implementation not be active, then it
is automatically started by the Implementation Repository, provided that the server has been
registered there beforehand. Exceptions are the so-called persistent servers that, as a rule,
have to be started manually and that, afterwards, can permanently wait for client requests.
Since the OMG has so far abstained from formally specifying the Implementation Reposi-
tory, it is the vendor’s decision whether and how this repository is implemented. This is a se-
vere disadvantage for the design of interoperable CORBA applications as developers cannot
act on the assumption that an Implementation Repository is actually available and that they
can start the needed server implementations automatically if required. As one consequence,
they themselves have to be concerned about detecting and solving the problem of a crashed
server.

Following, Figure 3 provides an overview of the single components of CORBA-based appli-
cations.

3.5 Procedural Steps in Developing a CORBA-Based
Application

The development of a CORBA-based application normally begins with the creation of an
IDL interface. This interface definition is then compiled by means of an IDL compiler. The
IDL compiler used is product-specific and tied to a specific platform—hardware and operat-
ing system—as well as programming language. Therefore, the type and number of files gen-
erated by the compiler varies. In principle, two sets of files are generated: stub file(s) and
skeleton file(s).

 3.6 Remote Invocations 21

The stub files are later needed by the client. A stub is created in constructs of the client’s
programming language; therefore, a remote object in a C++ program is locally represented by
a C++ object even if its remote implementation within the server may be written in Java. For
each object it accesses on the server side, a client needs the corresponding stub. The classes
generated in the stub file(s) are so-called proxy classes. They undertake the task of accepting
a client’s request and passing this message via the ORB to the appropriate object implemen-
tation. If parameters have to be passed with the message, the stub also translates, or marshals,
the client-language data types into a format suitable for transmission over the ORB. Should
the invocation produce a return value, it is transmitted on the network to the proxy, which
unmarshals and forwards it to the client. Here, it is irrelevant whether the actual object im-
plementation resides on the same host, meaning that no physical network exists between the
components, or whether it resides on a remote host somewhere on the Internet. The devel-
oper of a client application has to implement the application logic from the view of the end-
user (client code); whereby, the IDL operations realized on the server side are utilized as ser-
vices.

The skeleton files are needed by the object implementations that are later instantiated in the
server application and that actually implement the interfaces and types defined in the IDL in-
terface (server code). In Java, the classes generated in the skeleton file(s) can, for example,
serve as superclasses for the implementations and have to be extended in order to supply the
required application logic. Subsequently, both parts of the application, client and server, have
to be linked to the ORB runtime library. The complete procedure is demonstrated in Figure 4
below.

3.6 Remote Invocations

One of the central principles of object-orientation is encapsulation, the separation of interface
and implementation. As discussed in Section 2.2, for distributed object-oriented systems, ad-

Interface
Repository Implementation

Repository

Client

Server
Object Implementations

Dynamic
Invocation

Client IDL
Stubs

ORB Interface

Dynamic
Skeleton

Invocation

Server IDL
Skeletons

Object Adapter

Object Request Broker

Figure 3: Central Components of CORBA-Based Applications

22 3 Concepts of the CORBA Standard

ditional aspects of encapsulation concerning transparency requirements come into play, for
example, location transparency, which denotes hiding the location where a software object
resides. It is not possible to infer the host where an object resides by analyzing the object’s
interface. If that principle is followed, a user can formulate a method invocation identically,
irrespective of whether the object is local or remote. This is realized by the proxy objects
mentioned above. They have the same interface as the proper object; however, they reside lo-
cally on the caller’s machine. The caller transmits its request to the proxy object, which for-
wards it to the remote server object. The caller, therefore, only “sees” the proxy object. Invo-
cations between distributed objects always result from intermediation of the ORB. And, as
briefly discussed above, there are two types of client-side calls: static calls, employing the
client stubs containing the respective proxy objects; and dynamic calls via the Dynamic In-
vocation Interface that need the aid of an Interface Repository. Together with the object
adapter, the ORB is responsible for localizing the corresponding implementation, possibly
starting the server program, provided that a suitable daemon or agent and an Implementation
Repository are available, delivering the request, and returning the result if there is any. On
the server side, both types of calls are either handled by a static interface using server skele-
tons or by the Dynamic Skeleton Interface. For the server it is indistinguishable whether an
operation was invoked statically or dynamically. In the same way, a client also cannot dis-
criminate between static or dynamic execution of its request. In Figure 5, the principle of
separating client and server-side object implementation as well as the different invocation
types are demonstrated.

3.7 Interoperability in the CORBA Standard

The functionality provided by the ORB is already sufficient to act as a communication me-
dium and to provide the basic requirements for interoperability between applications—

IDL Interface Definition

IDL Compiler

Stubs Skeletons

Runtime Library
Server

Application

Server Code

Client
Application

Runtime Library

Client Code

Figure 4: Procedural Steps in Developing a CORBA-Based Application

3.7 Interoperability in the CORBA Standard 23

independent of the employed programming languages and platforms. However, as soon as
ORB products of different vendors are used, advanced concepts are needed. The interopera-
bility between different ORB implementations defined by the OMG is based on two ele-
ments:

definition of a communication protocol as well as

introduction of a unique object reference.

In the following subsections, we briefly go into these two significant elements.

3.7.1 Protocols Defined by CORBA

In CORBA version 2.0, a protocol to enable communication between ORBs of different ven-
dors was introduced for the first time. The General Inter-ORB Protocol (GIOP) specifies a
standardized transmission syntax, the Common Data Representation (CDR), together with
several message formats. One important characteristic of CDR is that it provides a complete
binding of all data types defined in IDL and also supports different byte orderings and mem-
ory alignments. The GIOP definition incorporates the following message formats:

Request
This format enables a client’s access to the object implementation.

Client

Server

Object Implementations

Dynamic
Invocation

Client IDL Stubs

Dynamic
Skeleton Invocation

Server IDL
Skeletons

Object Adapter

Object Request Broker

 static invocation
 dynamic invocation

Figure 5: Separation of Client and Object Implementation
 and Different Types of Invocation

24 3 Concepts of the CORBA Standard

Reply
With the help of this format, the output and/or return values of the server are sent
back to the client. Should the object implementation have changed its location, the
reply contains a LocationForward message and the new object reference to which the
original request should be redirected.

CancelRequest
This format is used to notify the server that the client is no longer expecting a reply
for its request.

LocateRequest
Clients can send a LocateRequest message to determine whether or not a particular
object reference is valid.

LocateReply
The server uses this message format to answer a client’s LocateRequest message.
This reply contains a message whether the server knows the object or not. If the ob-
ject has changed its location and the server knows it, the new valid object reference is
also returned.

CloseConnection
If a server intends to close the connection prematurely and not serve any further re-
quests, this format has to be used.

MessageError
This format is used by the client and the server and indicates communication prob-
lems.

In version 2.1 of the CORBA standard, the GIOP message formats were extended by the
Fragment message. With this format, large data sets sent or returned with requests or replies
can be broken into smaller packages (fragments). These fragments contain an identifier indi-
cating whether additional fragment messages are to be expected or the final fragment was re-
ceived. The evaluation of a request or reply is postponed until the last fragment was received.
Additionally, several of the data structures used internally by the ORB were modified in
CORBA 2.1. However, these changes do not affect application programmers; they are only
relevant to developers of ORBs or bridges from one protocol version to another. In addition
to the single-direction protocol where a client’s ORB initiates a connection, GIOP also pro-
vides a bidirectional variant that allows clients as well as servers to act as originators of a
message.

GIOP is an abstract protocol. The actual communication is handled through the Internet Inter
ORB Protocol. The IIOP specifies how GIOP messages can be exchanged over Transmission
Control Protocol/Internet Protocol (TCP/IP) connections. ORB manufacturers can also im-
plement additional, so-called Environment-Specific Inter-ORB Protocols (ESIOP) as long as
the basic requirements for ORB-to-ORB communication are met.

3.7.2 Interoperable Object Reference

The introduction of the Interoperable Object Reference in CORBA 2.0 enabled the world-
wide unambiguous referencing of objects for the first time. The IOR is a dedicated object
reference that consists of a type identifier and a number of Interoperability Profiles (IOP).

 3.7 Interoperability in the CORBA Standard 25

With the help of the IOR, it is possible to uniquely identify objects across systems and their
environments (in particular, their address spaces). Profiles contain an Internet address, a port
number and an object identifier (denoted as object key in the standard) that the ORB gener-
ates and uses internally. The actual content of this key is transparent to application develop-
ers (opaque). Only the ORB that generated the IOR knows the exact meaning of its content.

An IOR can be transient or persistent. The latter does not imply that the corresponding
CORBA object is also persistent. Should a server application be terminated and later re-
stated, then all transient IORs are invalidated. This is not the case with persistent IORs. A
persistent IOR has the advantage that it has to be delivered to the client application only
once. But, this assumes that, each time the server is restarted, the Internet address of the
server host was unmodified and its port number is still free since both values are part of the
IOR.

4 Introduction to the Interface
Definition Language

In order to describe the interfaces of objects offering services, the OMG introduced the Inter-
face Definition Language (IDL). IDL is a purely declarative language, meaning that, with its
help, the needed data types and interfaces—with their attributes, operation signatures, and
exceptions—are described. The actual algorithmic implementation of operations, however, is
not provided. The IDL provides the basis for programming language independence since only
an IDL compiler translates the IDL specifications into a certain programming language. In
addition to the language mapping from IDL to Java covered in this book, several other map-
pings to programming languages such as Ada, C, C++, COBOL, Lisp, PL/1, Python, and
Smalltalk were defined by the OMG. Furthermore, non-standardized mappings exist that are
available in proprietary ORBs, e.g., IDL to Eiffel, Objective-C, and Perl.

4.1 Lexical Elements of IDL

The smallest units that an IDL specification consists of are called lexical elements (or to-
kens). In IDL, there are five classes of lexical elements:

white space,

identifiers,

keywords,

literals, and

operators and separators.

White space characters are blanks, horizontal and vertical tabulators, form feeds, newlines,
and comments; they are ignored by the IDL compiler.

Identifiers, keywords, and literals are separated by white space. We also use white space to
improve readability of our specifications by uniformly formatting them.

4.1.1 Comments

Comments are developer explanations and remarks used for documentation purposes and are
not to be considered by the IDL compiler. A line comment starts with the characters // and
terminates at the end of this line. A block comment is started by the characters /* and is ter-
minated with the characters */. Block comments can extend across several lines; they do not
nest. A line comment has no special meaning within a block comment. And, similarly, a
block comment has no special meaning within a line comment.

28 4 Introduction to the Interface Definition Language

4.1.2 Identifiers

The names that developers assign to the modules, interfaces, data types, constants, or opera-
tions they define are called identifiers. An IDL identifier is made up of an arbitrarily long se-
quence of characters; by “character”, we mean the ASCII alphabetic characters, the digits
from 0 to 9, and the underscore character (‘_’). The first character of an identifier must be
an ASCII alphabetic character or an underscore. Upper- and lower-case letters are treated as
the same letter. However, once one has decided in favor of a certain notation, e.g., Pub-
lisher, this must be consistently retained. Any differences in the spelling of the same
name, for example, publisher, neither references the element previously named Pub-
lisher, nor is it acceptable as a new identifier for another element.

Identifiers starting with an underscore constitute a special case—they are called escaped
identifiers. Escaped identifiers should only be used in exceptional cases. It should be noted
that the underscore is virtually ignored by the IDL compiler so that, e.g., the identifiers Pub-
lisher and _Publisher are treated equivalently. The reason for the OMG to introduce
this concept is that IDL is constantly evolving, resulting in the definition of new IDL key-
words, and therefore collisions with existing programs might occur. The result of employing
the underscore now is that, on the one hand, the identifier cannot collide with a new IDL
keyword. And, on the other, in the code generated by the IDL compiler, the original identifier
is used. As an example, the character sequence _factory would not be treated as the IDL
keyword factory but would be admissible as an identifier. The OMG recommends using
escaped identifiers only for legacy interfaces or for mechanically generated IDL.

When selecting identifiers during interface definition, one should bear in mind that the inter-
face can be translated into a multitude of programming languages. Therefore, one should re-
frain from identifiers like class, for, if, PERFORM, etc.

4.1.2.1 Excursion: Style Guidelines for IDL Identifiers

It is highly recommended certain conventions be followed when selecting IDL identifiers.
Syntactically, these are not compulsory; but, they provide other readers of IDL interfaces
with helpful information and simplify their orientation concerning the different types of ele-
ments in an IDL specification. In the OMG IDL Style Guide, the OMG recommends employ-
ing upper-case and lower-case letters as well as underscores according to the following rules:

1. Identifiers for modules, interfaces, value types, type definitions, constructed types
(struct, union, and enum), and exceptions are written in mixed upper- and
lower-case letters. No underscores appear in an identifier; all words begin with an
upper-case letter with the remaining letters being lower-case.

Examples: DatabaseAdapter, Product, CosEventChannelAdmin

2. Identifiers for operations, attributes, parameters, and members of structures are writ-
ten in lower-case letters. Underscores are used to separate words in multi-word iden-
tifiers.

Examples: register_consumer, age, production_date

4.1 Lexical Elements of IDL 29

3. Identifiers for values of enumeration types and constants are written in upper-case let-
ters. Underscores are used to separate different words (see above).

Examples: MAX_NUMBER_OF_USERS, MONDAY, VAT_RATE

4.1.2.2 Excursion: Additional Formatting Rules

In addition to the conventions for the creation of IDL identifiers, there are several rules con-
cerning the usage of braces and the indentation of text that should be followed consistently in
order to increase the readability of the resulting IDL code. With respect to the placement of
braces, the OMG IDL Style Guide proposes two different alternatives:

the opening brace ‘{’ is placed in a new line following the line containing the begin-
ning keyword with the same indentation as the keyword or

the opening brace ‘{’ is on the same line as its beginning keyword.

For both variants, it is recommended that the closing brace ‘}’ be placed alone on a new line
at the same level as the keyword. Code enclosed in between the braces should be indented
one additional level.

Concerning indentation, it is generally accepted that the first IDL specification begins flush
left without leading white space (blanks, tabulators, etc.). If a single definition has to be con-
tinued on another line, it should be indented to the next level—even more if this helps to
clarify the coherence of the different components. Ideally, one horizontal tabulator is used
per indentation level.

Example for variant 1:

interface Count
{
 readonly attribute long value;
 void increment();
 void reset();
};

Example for variant 2:

interface Count {
 readonly attribute long value;
 void increment();
 void reset();
};

4.1.3 Keywords

The identifiers listed in Table 1 are reserved as IDL keywords; they may not be used other-
wise (e.g., as user-defined identifiers).

30 4 Introduction to the Interface Definition Language

Table 1: IDL Keywords

abstract emits inout provides truncatable

any enum interface public typedef

attribute eventtype local publishes typeid

boolean exception long raises typeprefix

case factory module readonly unsigned

char FALSE multiple setraises union

component finder native sequence uses

const fixed Object short ValueBase

consumes float octet string valuetype

context getraises oneway struct void

custom home out supports wchar

default import primarykey switch wstring

double in private TRUE

The IDL keywords written in italics are only of interest in the context of the CORBA Com-
ponent Model (CCM), which does not fall within the scope of this book. Therefore, they are
not discussed in the following chapters.

Keywords must be written exactly as shown in the list above. For example, module is a va-
lid IDL keyword; usage of Module or MODULE, respectively, is an error.

4.1.4 Punctuation Characters

In addition to its keywords, IDL applies so-called punctuation characters that act as, among
other things, operators or are employed for grouping or terminating definitions. The list be-
low displays all valid IDL punctuation characters.

 ; { } : , = + - () < >

 [] ‘ “ \ | ^ & * / % -

Further IDL elements of special meaning are the following characters or character sequences.
They are of relevance since the IDL preprocessor is activated before the actual translation of
IDL source files begins.

! || &&

4.1 Lexical Elements of IDL 31

4.1.5 Preprocessor Directives
A #include directive instructs the compiler to read an additional IDL file before translat-
ing the specification at hand. This enables reuse of data types and interfaces that are defined
in a different source file without having to input them once again.

The #pragma directive is a means of determining, among other things, the type identifica-
tion (repository ID) of an object for distributed applications and, especially, the Interface Re-
pository. This allows for several objects with the same interface, implementation, and func-
tionality but with different type identifications generated by the pragma directive to be active
at the same time.

Three forms of pragma directives are detailed in the standard:

#pragma prefix string, which is used to add the specified prefix to the re-
pository ID,

#pragma version name major.minor, which is used to modify the version
number of an object, and

#pragma name id, which is used to determine the repository ID, for example, for
access via DCE.

It should be noted that the IDL interfaces published by the OMG contain the directive
#pragma prefix "omg.org" but the corresponding classes of Java-ORB are elements
of the package org.omg; an example is org.omg.CosNaming.

Furthermore, with CORBA version 3.0, a new IDL keyword typeprefix was introduced.
It replaces the former use of the preprocessor directive #pragma prefix. Therefore,
more recent specifications use the new keyword while older, but still valid, specifications
remain unchanged.

4.1.6 Syntax Notation

Not every sequence of lexical elements is a correct IDL specification. The IDL grammar de-
termines which sequence of symbols is valid and can be translated by the IDL compiler and
which is not. To define IDL grammar, we employ syntax rules, whose notations are formu-
lated in the well-known Extended Backus-Naur Form (EBNF). The complete set of IDL syn-
tax rules is given in Appendix A. Table 2 explains the symbols that IDL-EBNF utilizes and
describes their meanings.

Table 2: IDL EBNF Symbols

Symbol Description

::= is defined as

| alternative

<text> non-terminal syntactical element

"text" literal

32 4 Introduction to the Interface Definition Language

* zero or more occurrences of the preceding syntactical element

+ one or more occurrences of the preceding syntactical element

{} the enclosed syntactical elements are grouped into a single syntactical element

[] the enclosed syntactical element is optional (zero or one occurrences)

As an example, we analyze the first two rules of the OMG IDL grammar provided in
Appendix A.

 (1) <specification> ::= <import>* <definition> +
 (2) <definition> ::= <type_dcl> “;”
 | <const_dcl> “;”
 | <except_dcl> “;”
 | <interface> “;”
 | <module> “;”
 | <value> “;”
 | <type_id_dcl> “;”
 | <type_prefix_dcl> “;”
 | <event> “;”
 | <component> “;”
 | <home_dcl> “;”

The rules illustrate the basic composition of an IDL file. One can see that it consists of a
(non-empty) sequence of definitions, which, in turn, specify types, constants, exceptions, in-
terfaces, modules, values, etc. Additionally, this sequence is terminated by a “;” punctuation
character. It may be initiated by several import declarations, the composition of which is spe-
cified in different syntax rules.

4.2 IDL Types

After having treated the lexical elements that constitute an IDL specification in the preceding
sections, we examine, in the following, in which way types, constants, exceptions, interfaces,
modules, and values are defined in IDL. All the code fragments shown in the next sections
are valid IDL and, thus, can be translated with an IDL compiler. In order to do this, they have
to be stored in a file named with the extension “.idl”.

The constants, the attributes, the operation parameters, and the return results, which we de-
fine in an IDL specification, all have a data type that the IDL compiler maps to the corre-
sponding type in the chosen implementation language.

The data types provided by IDL can be differentiated into basic types, constructed types,
template types, arrays, native types, interfaces, and value types (see Figure 6). The basic
types are built into IDL and can be used without further preparation; all the other types have
to be declared by developers to be suitable for their particular application.

 4.2 IDL Types 33

4.2.1 Basic Types

The basic types provided by IDL are suitable for storing simple values like, e.g., integer
numbers, floating-point numbers, or characters. They are further classified into arithmetic
types, character types, and boolean types as well as the data types octet and any. In addi-
tion, a type void is declared, which is used as a return type for operations that do not return
a result.

The arithmetic types are, again, broken down into integer types and floating-point types.
IDL’s integer types are short, unsigned short, long, unsigned long, long
long, and unsigned long long; they represent integer values in the ranges indicated
in Table 3 given below.

Table 3: Ranges of Integer Data Types

Data Type Range

short -215 to 215 – 1

unsigned short 0 to 216 – 1

long -231 to 231 -1

unsigned long 0 to 232 – 1

long long -263 to 263 – 1

unsigned long long 0 to 264 – 1

IDL Data Type

Basic Types Constructed Types
Template

Types
Interfaces

Value
Types

boolean

char

short

. . .

enum

struct

union

sequence

fixed

wstring

string

Arrays
Native
Types

Figure 6: IDL Data Types

34 4 Introduction to the Interface Definition Language

The basic types float, double, and long double are provided for storing floating-
point numbers. The ranges of these data types comply with the standards defined by the Insti-
tute of Electrical and Electronics Engineers (IEEE). The type float represents single-
precision (32 bit) floating-point numbers. The double type represents double-precision (
64 bit) floating-point numbers; and, long double is a double-extended (79 bit) floating-
point type with an exponent of at least 15 bits in length and a signed fraction of at least 64
bits.

Application developers should employ the long double type with caution since that type
was introduced after CORBA 2.0 and is not yet supported by all programming language
mappings. For example, no IDL to Java mapping exists for long doubles and developers
of interoperable applications should, at the present time, abstain from using them.

OMG IDL supports two character types, char and wchar. The data type char occupies
one byte (8 bit) and can encode arbitrary characters from a byte-oriented code set. Further-
more, the type wchar (wide char) can encode characters from any code set such as Unicode,
for example. The size of wchar is implementation-dependent.

The basic type boolean is used to denote logical (boolean) values. Its range consists of the
two values FALSE and TRUE.

In order to transmit 8-bit values that may not undergo any conversion during message com-
munication, the basic type octet can be utilized.

The last but most powerful data type in IDL is type any. An any can store arbitrary OMG
IDL types: basic or constructed types, template types, arrays, interface, etc., as well as user-
defined types.

4.2.2 Constructed Types

The constructed data types are IDL types that developers compose from other types and that
they label with a name. In that group belong structures (struct), enumeration types
(enum), and discriminated unions (union), discussed below successively.

4.2.2.1 Structures

A structure aggregates a number of data elements that belong together and assigns a name to
the emerging new type. The individual members of a structure each have their own type and
name; the types may be unequal. The definition of a structure begins with the keyword
struct, followed by an identifier—the name of the structure—and the list of members,
which is enclosed in ‘{’ and ‘}’ and terminated by ‘;’. A member is defined by its type and
its name; each definition is terminated by ‘;’. A structure can contain an arbitrary number of
members of all valid IDL types. Nesting of structures is also allowed (see syntax rules (69)–
(71) in Appendix A).

 4.2 IDL Types 35

For example:

// simple structure

struct Product
{
 unsigned long product_number;
 string name;
 double price;
 float vat_rate;
};

// nested structure

struct OrderItem
{
 unsigned long quantity;
 struct Product
 {
 unsigned long product_number;
 string name;
 double price;
 float vat_rate;
 } item;
};

Structures define a new scope. All the identifiers of the members of a structure must be
unique. However, if structures are nested, the identifiers of members from the enclosing
structure can be reused in an embedded structure to name members of that inner structure.

Nested structures can also evolve if we use the name of a structure defined beforehand as the
type of the member of a newly defined structure. The example below demonstrates this issue:

// structure

struct AlphanumericDate
{
 string date;
};

// structure

struct NumericDate
{
 unsigned short day;
 unsigned short month;
 unsigned short year;
};

// outer structure

struct Date
{
 // inner structures

36 4 Introduction to the Interface Definition Language

 AlphanumericDate a_date;
 NumericDate n_date;
};

As a result of the name scoping rules, it is possible to name the string-member in Al-
phanumericDate by date and, again, to choose the name Date for the last structure in
the example. In Section 4.8, we discuss the IDL scoping rules in more detail.

4.2.2.2 Enumerations

An enumerated type defines a list of maximum 232 named values, the so-called enumerators,
which establish the range of that type. The type itself obtains a name (see syntax rules (78),
(79)). IDL guarantees that an enumerated type is mapped to a data type that consists of at
least 32 bits and, therefore, can represent all enumerator values. Differing from other pro-
gramming languages like, e.g., C or C++, no assumptions on the actual values of enumera-
tors can be made. In the example below, it is not allowed for MO to be assigned the value 0.
The only certainty that developers can rely on is that the order in which the identifiers appear
in the specification of an enumeration defines the relative order of their values. In the exam-
ple, the value of MO is less than that of TU.

Example of an enumerated type:

enum DaysOfTheWeek
{
 MO, TU, WE, TH, FR, SA, SU
};

Enumerated types do not define a new scope. Therefore, the identifiers in an enumeration
may not collide with identifiers introduced previously. In the example below, the second
definition would be an error since APRIL is used twice:

enum Month
{
 JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,
 AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER
};

enum User
{
 APRIL, CHRIS, TOM, MARTIN, AXEL, MARCUS
};

Note that, in the context of an enum specification, a typedef declaration (see Section
4.2.3) is redundant and should not be utilized.

4.2.2.3 Unions

An IDL union (sometimes called variant) is a cross between the union and switch-
statement known from C and C++, respectively. Therefore, a union can, at any given time,
contain an element of a type that is specified by the case-labels in the switch. A union
consists of one or more case-labels, each followed by a combination of data type and corre-

 4.2 IDL Types 37

sponding identifier (see syntax rules (72)–(77)). Differing from a structure, a union can hold
only a single value of one of its members. The value of the discriminator, whose type is
specified in the switch, decides which union member is used. The discriminator must be
type boolean or char, an integer type, or a previously defined enumerated type. The
members of the union can be of any IDL type.

Example of a union type:

union Date switch(short)
{
 case 1:
 long numeric;
 case 2:
 string alphanumeric;
 default:
 any two_formats;
};

As far as possible, the IDL compiler checks the plausibility of the definition of a union pro-
vided by a developer and tries to eliminate errors. For example, since a boolean can only
hold the values TRUE or FALSE, the following union definitions are correct:

union Date1 switch(boolean)
{
 case TRUE: string alphanumeric;
 default: long numeric;
};

union Date2 switch(boolean)
{
 case FALSE: long numeric;
 default: string alphanumeric;
};

union Date3 switch(boolean)
{
 case TRUE: string alphanumeric;
 case FALSE: long numeric;
};

However, the definition below is an error since the default-label can never be reached:

union Date4 switch(boolean)
{
 case TRUE: string alphanumeric;
 case FALSE: long numeric;
 default: any two_formats;
};

From the view of object orientation, unions are antiquated language constructs that are hard
to understand, error-prone, and have little relation to the principles of object-oriented soft-
ware development. In the following, we do without them.

38 4 Introduction to the Interface Definition Language

4.2.3 Excursion: Named Data Types

In IDL, it is possible to introduce new names for any data type. This is done with the
typedef keyword. One should capitalize on that possibility in order to declare speaking
names for complex or self-defined types. For example:

typedef short SmallInt;
typedef long MidInt;
typedef long long BigInt;

On the other hand, typedef-names are mandatory when attributes or operations are defined
since direct specifications of new structures, enumerated types, sequences, unions, or fixed
types are not feasible there.

typedefs are also mandatory when fixed types (see Section 4.2.4.1), sequences (see Sec-
tion 4.2.4.3), or arrays (see Section 4.2.5) are defined.

Newly defined types should not be redefined under an additional name as in the code frag-
ment below:

typedef long Key;
typedef Key PublicKey; // unconvincing

4.2.4 Template Types

Three template types are provided by IDL: fixed types, string types, and sequences. One
common characteristic of these types is that they require or offer the opportunity to specify
additional information when they are declared. With this specification, the size of the type
and, in the case of a sequence, the type of its elements is indicated.

4.2.4.1 Fixed Types

With the help of the fixed keyword, new numeric data types that are able to represent
fixed-point decimal numbers of up to 31 significant digits can be defined. When specifying
such a type, the total number of significant digits, as well as the scale (that is the number of
digits following the decimal point), have to be given in the form fixed<n, m>. The scale
must be a positive number less than the total number; 0 is a valid scale value. For example,
fixed<10, 2> is a fixed type with the range -99,999,999.99 to 99,999,999.99 and an ac-
curacy of 0.01. Fixed types can only be specified in the context of a typedef declaration.

From the syntax rules concerned here ((42)–(47), and (96)), we see that the general syntax is

typedef fixed<total_number, scale> identifier;

The result of the IDL definition typedef fixed<6, 2> Count; is the specification of
a new type named Count, which can store decimal fractions with four digits before and two
digits following the decimal point (six digits in total). The range of this newly defined type
therefore is -9,999.99 to 9,999.99.

 4.2 IDL Types 39

The keyword fixed was only introduced after CORBA version 2.0, meaning that it is not
supported by older ORBs. For that reason, during development of interoperable applications
intended to run on different ORBs, fixed types should only be employed when it can be
ensured that all involved platforms support them.

Additional example of a valid fixed type:

typedef fixed<31, 0> BigInt;

4.2.4.2 String Types

A string consists of all possible 8-bit characters included in the ISO Latin-1 (8859.1) charac-
ter set; only null, the bit sequence 00000000 is excluded. As in a sequence (see Section
4.2.4.3 below), the maximum number of elements can be specified (bounded string) or un-
specified (unbounded string). An unbounded string can contain an arbitrary number of char-
acters; it is declared with the keyword string. A bounded string is declared in the form
string<n>, where n is a positive integer constant that determines the string’s maximum
size.

The data type wstring (wide string) is similar to the string type; the only difference is
that it supports Unicode characters (wide character; see Section 4.3.1.4). wstrings can
also be declared bounded. In that case, the form wstring<n> is used.

Examples of strings:

// unbounded strings

typedef string CharacterString;
typedef wstring WideCharacterString;

// bounded strings

typedef string<20> CharacterString20;
typedef wstring<10> WideCharacterString10;

(See syntax rules (42)–(47), (81), and (82).) Since the wstring data type was introduced
after CORBA version 2.0, it is not supported by older ORBs and should be employed with
caution when interoperable applications intended to run on different platforms are imple-
mented.

4.2.4.3 Sequences

A sequence is a one-dimensional array of values of the same type. Any valid IDL type is fea-
sible for the elements of a sequence. The maximum number of elements in a sequence can be
specified (bounded sequence) or unspecified (unbounded sequence). An unbounded sequence
can contain an arbitrary number of elements. Its actual size is only restricted by the amount
of memory available at run-time. For a bounded sequence, the maximum size of its elements
is indicated in the type declaration and fixed at compile-time; it must be a positive integer
constant. This fixed size is to be interpreted as an upper bound; the actual number of ele-
ments (also called length) can be less than or even zero.

40 4 Introduction to the Interface Definition Language

Sequence types can only be specified in the context of a typedef declaration (see syntax
rules (42)–(47), (80)). The elements of a sequence can be of a sequence type.

Examples of sequences:

typedef sequence<long> Vector; // unbounded
typedef sequence<long, 10> Vector10; // bounded

// sequence with structure

typedef Product Article; // from section 4.2.2.1
typedef sequence<Article> ProductCatalog;

// nested sequences

typedef sequence<float> Row;
typedef sequence<Row> Matrix;

Sequences are similar to arrays, which we discuss in the next section, Section 4.2.5. How-
ever, while the size of an array must be specified during its definition, this is optional for se-
quences. Thus, sequences offer more flexibility since they can store a large amount of data
not known during the definition of the IDL interface and which is only determined at run-
time. Conversely, marshaling and passing the values of arrays during a method invocation is
often faster since the array’s size is known.

4.2.5 Arrays

Arrays consist of a number of values of the same type. An array is defined with the keyword
typedef followed by any IDL type, an identifier, and the array size, which is enclosed in
brackets, ‘[’ and ‘]’. It is not possible to define an array without specifying its size. The size
must be a positive integer constant. Multi-dimensional arrays are defined by appending addi-
tional bracketed size specifications. For example:

// one-dimensional arrays

typedef string TermsAndConditions[100];
typedef long Array10[10];

// multi-dimensional arrays

typedef long Matrix2D[10][20]; // two-dimensional
typedef float Matrix3D[10][20][10]; // three-dimensional

4.2.6 Native Types
The keyword native provides a declaration of new basic data types for use by an object
adapter. These are considered opaque and resemble the basic IDL types. The mapping of
such a type depends on the programming language. Therefore, its usage should be reserved to
ORB developers. Application developers should not employ native types in their programs
and we do not go into a detailed explanation of their specifics here.

4.3 IDL Constants 41

4.2.7 Interfaces

The interface is the fundamental and most important IDL type. It describes the services of-
fered by a CORBA object residing on the server. In an interface, the behavior of an object is
declared by specifying its operations and its state is declared by specifying its attributes.
This data type is covered in detail in Section 4.5.

4.2.8 Value Types

Value Types were introduced in the CORBA specification 2.3. By declaring value types, it is
possible not only to send references to objects from one host to the other but also to transmit
copies of objects. The definition and the main application areas of value types are discussed
more precisely in Section 4.6.

4.3 IDL Constants

4.3.1 Literal Constants

At the beginning of this chapter, we mentioned that the sequence of lexical elements making
up an IDL specification could also contain literals. These denote a value that the IDL com-
piler can determine directly and that it then incorporates into the code it generates. Since
their notation already expresses their value, such constants are also named literal constants
(or literals). IDL distinguishes between the following literals:

integer literals,

floating-point literals,

fixed-point literals,

character literals,

string literals, and

boolean literals.

4.3.1.1 Integer Literals

Integer literals can be denoted decimal (base ten), octal (base eight), or hexadecimal (base
sixteen).

In decimal notation, an integer literal is the digit 0 or it is a sequence of digits that begins
with 1–9.

In octal notation, an integer literal starts with the digit 0, which is followed by a (non-empty)
sequence of octal digits (0–7).

In hexadecimal notation, an integer literal starts with the sequence 0x or 0X, which is fol-
lowed by a (non-empty) sequence of hexadecimal digits (0–9, A–F, or a–f).

Some examples of integer literals are 0 (decimal), 11 (decimal), 011 (octal, decimal value is
9), 0x11 (hexadecimal, decimal value is 17).

42 4 Introduction to the Interface Definition Language

The standard does not specify the type (short, unsigned short, long, etc.) of an in-
teger literal.

4.3.1.2 Floating-point Literals

Floating-point literals consist of a sequence of decimal digits (integer part), a decimal point,
a sequence of decimal digits (fraction part), the letter e or E, an optional sign, and a further
sequence of decimal digits (exponent). The e or E stands for “times 10 to the power of”.

Several abbreviated forms are admissible:

either the integer part or the fraction part, but not both, can be omitted and

either the decimal point or the letter e (or E) and the exponent, but not both, can be
omitted.

Some examples of floating-point literals are 10., .10, 10.10, 10E2, .10e2, 10.0E-
10.

The standard does not specify the type (float, double, or long double) of a floating-
point literal.

4.3.1.3 Fixed-point Literals

A fixed-point literal consists of a sequence of decimal digits (integer part), a decimal point, a
sequence of decimal digits (fraction part), and the letter d or D. If an abbreviated notation is
used,

either the integer part or the fraction part, but not both, can be omitted and

the decimal point, but not the letter d (or D), can be omitted.

The type of a fixed-point literal is determined by the number of its digits—leading or trailing
zeros are not considered here. For example, 123.45d is of type fixed<5, 2>.

4.3.1.4 Character Literals

A character literal is a sequence of one or more characters enclosed in single quotation
marks ('). Character literals are of type char. A character’s size is 8 bits; it can have any
numerical value between 0 and 255. The ISO Latin-1 (8859.1) standard defines all admissi-
ble characters and their values. In addition to the ASCII characters, this character set pro-
vides other characters, e.g., French accents or German umlauts.

Non-graphic characters (such as white space characters) and the characters ', ", and \ can be
represented via escape sequences.

Table 4 below shows all the escape sequences valid in IDL.

 4.3 IDL Constants 43

Table 4: Escape Sequences in IDL

Escape Sequence Description

\n newline

\t horizontal tabulator

\v vertical tabulator

\b backspace

\r carriage return

\f form feed

\a alert

\? question mark

\' single quotation mark

\" double quotation mark

\\ backslash

\ooo octal number

\xhh hexadecimal number

\uhhhh Unicode character

The escape sequence \ooo consists of a \, followed by one, two, or three octal digits. \xhh
consists of \x, followed by one or two hexadecimal digits.

Some examples of char literals that all represent the letter A are 'A', '\x41', and '\101'.

Literals of the type wchar are specified completely analogous; the only difference is that
they require the prefix L, as in, e.g., L'a'. For wchar literals, the additional escape sequence
\uhhhh is admissible. With its help, any Unicode character can be represented. Here,
\uhhhh stands for \u, followed by one, two, three, or four hexadecimal digits. Some ex-
amples are L'\u00c4' (Ä), L'\u00e4' (ä), L'\u010c' (), L'\u010d' (), L'\u0141' (),
L'\u0142' (), L'\u00c5' (Å), and L'\u00e5' (å).

Here, again, problems might arise from the fact that not all of today’s IDL compilers accept
the prefix L. Moreover, since the data type wchar was only introduced in CORBA version
2.0, interoperability problems with older ORBs that do not support that type might result.

The attempt to initialize a char constant with a wchar literal, or vice versa, a wchar con-
stant with a char literal, may yield a warning or an error message from the IDL compiler
and should be avoided.

44 4 Introduction to the Interface Definition Language

4.3.1.5 String Literals

A string literal is a sequence of characters enclosed by double quotation marks ("). All char-
acters mentioned in Section 4.3.1.4 are admissible with the exception of ‘\0‘, the character
with numeric value 0. A string literal is of type string<n>, where n is the number of char-
acters enclosed in the quotation marks. Characters in strings adjacent in an IDL specification
are concatenated to a single string.

Some examples of string literals are “AbC”, “Ab” “C” (also equals “AbC”), and “string3”.

Wide string literals, literals of type wstring<n>, are specified analogously; they simply
have to begin with an L prefix and, differing from string literals, they may also contain Uni-
code characters.

The same caution that was advisable concerning the employment of wchar literals is also
indicated in the case of wide string literals.

Initialization of a string constant with a wide string literal, or vice versa, a wide string con-
stant with a string literal, may yield a warning or an error message from the IDL compiler
and should be avoided.

4.3.1.6 Boolean Literals

There are two boolean literals: TRUE and FALSE.

4.3.2 Declaration of Symbolic Constants

In addition to the literal constants that we addressed in Section 4.3.1, the IDL also knows
symbolic constants, which are specified with a type, an identifier (the “symbol”), and a value.
From syntax rules (27)–(38) (see Appendix A), one can see that the following types are ad-
missible for symbolic constants:

all integer types (short, long, ..., unsigned long long),

all floating-point types (float, double, long double),

all fixed-point types (here, the number of digits and the scale are determined from the
constant’s value),

the character types char and wchar,

the string types string and wstring (bounded as well as unbounded),

the boolean type, and

the type octet.

Furthermore, any type that is named by a typedef declaration and belongs to the list above
or is enumerated is also admissible.

In its simplest form, the value of a symbolic constant is specified by means of a literal con-
stant. The examples below demonstrate how this works for all types of literals discussed in
Section 4.3.1.

 4.3 IDL Constants 45

Declaration of integer symbolic constants:

const short S1 = 0; // decimal
const short S2 = 11; // decimal
const short S3 = 011; // octal, decimal value is 9
const short S4 = 0x11; // hexadecimal, decimal value is 17

Declaration of symbolic floating-point constants:

const double D1 = 10.;
const double D2 = .10;
const double D3 = 10.10;
const double D4 = 10E2;
const double D5 = .10E2;
const double D6 = 10.0e-10;

Declaration of a symbolic fixed-point constant:

const fixed F = 123.45d; // the type is fixed<5, 2>

Declaration of symbolic character constants:

const char C1 = 'A';
const char C2 = '\n'; // newline
const char C3 = 'ß';
const char C4 = '\x41'; // 'A'
const char C5 = '\101'; // 'A'
const wchar WC1 = L‘a‘;
const wchar WC2 = L'\u00c4'; // 'Ä'
const wchar WC3 = L'\u00e4'; // 'ä'
const wchar WC4 = L'\u010c'; // ' '
const wchar WC5 = L'\u010d'; // ' '
const wchar WC6 = L'\u0141'; // ' '
const wchar WC7 = L'\u0142'; // ' '
const wchar WC8 = L'\u00c5'; // 'Å'
const wchar WC8 = L'\u00e5'; // 'å'

Declaration of symbolic string constants:

const string TEXT1 = “AbC”;
const string TEXT2 = “Ab” “C”; // equals “AbC”
const string TEXT3 = “\xA” “b”;

The last example declares a string that contains the two characters ‘\xA’ and ‘b’ and not the
single character with the hexadecimal value ‘\xAb‘.

const wstring WS = L“\u00dcber”; // equals “Über”

It is also possible to provide the value of a symbolic constant with the specification of a con-
stant expression. This is a simple expression, the value of which can be determined at com-
pile-time by the IDL compiler.

46 4 Introduction to the Interface Definition Language

Only literals and identifiers of previously defined symbolic constants are allowed as operands
in a constant expression.

As operators, all IDL operators identified in Section 4.3.2.1 can be applied. Their operation
is comparable to that of the operators known from C++ and Java. Below, we give diverse ex-
amples for the usage of operators in constant declarations.

4.3.2.1 Operators

The IDL provides the following operators:

 + - * / % << >> & | ^ ~

The unary operators + and – are applicable to floating-point and fixed-point operands; the
binary operators *, /, +, and – can operate on two floating-point or on two fixed-point oper-
ands.

The unary operators +, -, and ~ and the binary operators *, /, %, +, -, <<, >>, &, |, and ^
can operate on integer operands.

Unary + and – determine the operand’s sign. The unary negation operator provides the bit-
complement of its operand.

The binary operators +, -, *, and / yield the result of addition, subtraction, multiplication,
and division of their operands, respectively. Operator % yields the remainder from the divi-
sion of the first operand by the second. For b 0, (a/b)*b + a%b equals a. For b=0, the
result is undefined.

The operators << and >> shift the left operand left and right, respectively; the number of bits
is specified by the right operand. Vacated bits are filled with 0. In both cases, the value of the
right operand must be 0 and < 64.

The operators &, ^, and | generate logical bitwise AND, Exclusive-OR, and Inclusive-OR
combinations of their operands. The results are indicated in the following Table 5:

Table 5: Results of the Bit-Operators

bit 1 bit 2 bit 1 & bit 2 bit 1 | bit 2 bit 1 ^ bit 2

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

 4.4 Exceptions 47

Examples for applying operators in constant expressions:

// unary operators with integer operands

const long LO1 = +1;
const long LO2 = -1;
const long LO3 = ~0x00ff; // decimal value is -256
const short SO1 = ~0x00ff; // as above
const unsigned long LO4 = ~0x00ff; // result 4294967040

// shift operators

const short SO2 = 0x0001 << 2; // result 4
const unsigned short SO3 = 0x0010 >> 1; // result 8

// bit operators
// INCLUSIVE OR

const short SO4 = 0x00f0 | 0x000f; // 0x00ff
const short SO5 = 0x00f0 | 0x00ff; // 0x00ff

// AND

const short SO6 = 0x00f0 & 0x000f; // 0x0000
const short SO7 = 0x00f0 & 0x00ff; // 0x00f0

// EXCLUSIVE OR

const short SO8 = 0x00f0 ^ 0x000f; // 0x00ff
const short SO9 = 0x00f0 ^ 0x00ff; // 0x000f

// unary operators with floating-point operands

const float FO1 = +1.;
const float FO2 = -.1;

// binary operators

const float FO3 = 1.0;
const float FO4 = FO3 + 2. – 1.; // 2.0
const float FO5 = 2. * FO1; // 2.0
const float FO6 = FO3 / FO4; // 1.0
const long LO5 = 7;
const long LO6 = 3;
const long LO7 = LO5 / LO6; // 2
const long LO8 = LO5 % LO6; // 1

4.4 Exceptions

With the help of exceptions, developers can determine the reaction of their applications on
the occurrence of a situation where it is not possible to proceed normally through the code of
an operation’s implementation. Potential reasons might be, e.g., that a non-existing file has to
be opened, that an element in a list has to be accessed but is not found, or that the connection
to another object was interrupted.

48 4 Introduction to the Interface Definition Language

In IDL, it is possible to define simple exceptions, containing no additional information except
for their type name, and constructed exceptions that can provide additional information on
the exceptional condition that has occurred during execution of the request. In the second
case, they widely resemble a structure; an exception can also contain an arbitrary number of
members of different IDL types (see syntax rule (86)). While a structure can itself be a mem-
ber of a sequence, a union, or an enclosing structure and can also appear as an attribute in an
interface, exceptions can only be utilized in the context of an operation declaration. For ex-
ample:

// simple exception

exception Error { };

// exception with additional details

exception ErrorReport
{
 string error_message;
 short error_code;
 string date;
};

4.5 Interface Declarations

The structure and purpose of an IDL interface are similar to those of a Java interface or an
abstract C++ class. The aim is to determine the externally visible (in Java or C++ specified
public) attributes and operations of an object. Constants, further types, and exceptions can
also be defined in an interface (see syntax rules (4)–(11)). We see that, in its simplest form,
an interface starts with the keyword interface, continues with the interface name, and
then provides the attributes, operations, and other elements of the interface, which are en-
closed in braces ‘{’ and ‘}’ delimiting the interface body. As usual, the declaration is termi-
nated by ‘;’. An interface defines a new scope of its own; all identifiers introduced in an in-
terface declaration must be unique unless they are defined in an embedded scope, for exam-
ple, a structure. The interface is the central IDL type. Without interfaces, no CORBA appli-
cation with distributed, cooperating objects would be possible. Supertype for all interfaces—
with the exception of abstract and local interfaces, described below—is the interface
CORBA::Object.

Example for an interface declaration:

interface ShopServer
{
 const unsigned long MAX = 100;
 // terms and conditions
 typedef sequence<string, MAX> TaC;
 exception Error { };
 readonly attribute TaC terms_and_conditions;
 readonly attribute unsigned long minimum_turnover;
 boolean order(in string product) raises(Error);
};

 4.5 Interface Declarations 49

If an interface B refers to an interface A and if, reciprocally, B is needed in the declaration of
A, then a forward declaration of A is necessary. This declares that A is the name of an inter-
face type without defining the internal composition of A. The example below demonstrates
how the problem can be solved that, in the declaration of B, operation returns a reference to
an A-object, while A’s declaration follows that of B. Without the possibility to forward de-
clare an interface name, the problem could not be solved. Simply rearranging the two inter-
faces would pose the problem reciprocally—B would be referenced before being declared.

interface A; // forward declaration of A

interface B
{
 A get_a();
};

interface A // definition of A
{
 B get_b();
};

An interface can be derived from one or several other interfaces, which are then called base
interfaces or superinterfaces. In that case, the derived interface, or subinterface, inherits all
elements (types, constants, exceptions, attributes, and operations) of the superinterfaces and
can use them as if they were its own elements. Inheritance is specified by inserting the list of
superinterfaces behind the name of the derived interface, separated from that by a ‘:’. A de-
rived interface may redefine any name of the types, constants, and exceptions that have been
inherited.

A difference from inheritance in C++ and Java is that in IDL neither overloading nor overrid-
ing of operations is admissible. For example:

interface X
{
 short opa(in short i);
 short opa(in short i, in long l); // error: overloading
};

interface Y : X
{
 short opa(in short i); // error: overriding
};

One further difference from C++ and Java is that an interface cannot contain embedded inter-
face declarations.

An interface declaration can begin with the keyword abstract. The interface is then ab-
stract and need not be implemented in a concrete programming language. Nevertheless, it
can serve as superinterface for other interfaces. Unless they are themselves abstract, inter-
faces derived from an abstract interface have to implement all inherited definitions. Abstract
interfaces may only inherit from other abstract interfaces. Supertype for all abstract interfaces
is the interface CORBA::AbstractBase.

50 4 Introduction to the Interface Definition Language

An interface declaration can also begin with the keyword local, declaring a local interface.
Note that an interface cannot be declared local and abstract at the same time. Objects imple-
menting a local interface are local objects, which have to reside in the same address space as
their callers. Supertype for all local interfaces is the interface CORBA::LocalObject.

Several special restrictions apply to local interfaces and their utilization. For example, they
may not appear

as parameter, return, attribute, or exception types in the context of the declaration of
an operation in a non-local interface or

as type of the state member of a value type.

A local interface may inherit from other interfaces; but, again, several restrictions have to be
noted. Table 6 gives an overview on admissible inheritance relationships.

Table 6: Inheritance Rules for Interfaces

Superinterface

Subinterface

abstract local neither abstract
nor local

abstract

local

neither abstract nor local

The following example demonstrates how an inheritance hierarchy of interfaces may be de-
fined. Besides single inheritance, multiple inheritance, where an interface derives from more
than one superinterface, is shown. An abstract interface File is declared, with derived sub-
interfaces ReadOnlyFile and WriteOnlyFile each declaring an additional specific
operation. Finally, the interface ReadAndWriteFile is declared, which, for its part, in-
herits from both interfaces ReadOnlyFile and WriteOnlyFile (see Figure 7).

abstract interface File
{
 void open();
 void close();
};

interface ReadOnlyFile : File
{
 string read_line();
};

interface WriteOnlyFile : File
{
 void write_line(in string data);
};

 4.5 Interface Declarations 51

interface ReadAndWriteFile : ReadOnlyFile, WriteOnlyFile
{
 void change_mode();
};

If an interface multiply inherits from several supertypes, as ReadAndWriteFile in the
example above, ambiguities concerning the names of the inherited elements (attributes, op-
erations, etc.) might arise. In Section 4.8 we briefly describe how such name conflicts can be
resolved.

4.5.1 Attribute Declarations

The data elements defined in an interface body are called attributes (see syntax rules (9),
(85), and (104)–(111)). The state of an object is described by the values of its attributes. In
any implementation language, an attribute is mapped to two methods for reading and writing
its attribute value, the so-called accessor functions (also getter and setter functions). An at-
tribute can be specified readonly; in that case, only the method to retrieve its value is gen-
erated.

Examples for attributes:

typedef fixed<6, 2> Thousand;
attribute Thousand amount;
readonly attribute long product_id;
attribute ProductCatalog product_catalog;
 // see section 4.2.4.3
attribute Product article; // see section 4.2.2.1

Even attributes can raise exceptions in CORBA. This is a consequence of their implementa-
tion through accessor functions and can be enabled with the IDL keywords getraises for
the corresponding getter and setraises for the corresponding setter method, respectively.
We do not go into details regarding these possibilities since not all known ORBs support that
functionality at the moment.

<<abstract interface>>
File

<<interface>>
WriteOnlyFile

<<interface>>
ReadOnlyFile

<<interface>>
ReadAndWriteFile

Figure 7: Example of Inheritance of Interfaces

52 4 Introduction to the Interface Definition Language

4.5.2 Operation Declarations

On the interface level, operations specify, in principle, the behavior of objects to be imple-
mented later in a concrete programming language. In IDL, an operation declaration consists
of the type of the operation’s return result, an identifier that determines the operation’s
name, and a parameter list, which is enclosed in parentheses, ‘(’ and ‘)’, and specifies zero
or more parameters as well as an optional list of exceptions that can be raised during execu-
tion of the operation and is also enclosed in parentheses (see syntax rules (87)–(95)). An op-
eration declaration may begin with the keyword oneway, which influences its invocation
semantics (see below). It may end with a context expression, which provides a list of proper-
ties of the caller’s environment that need to be supplied to the server—this powerful concept
must be handled with care if platform-independency is an objective. It is not covered in our
book.

Operations that do not return a result must specify the result type as being void. For each
parameter in the parameter list, the type and the name have to be given. In addition, each pa-
rameter specifies information on the direction in which its value is to be passed between cli-
ent and server. This information is provided by a directional attribute that precedes the pa-
rameter’s type. IDL offers three directional attributes:

in, the parameter value is passed from client to server,

out, the parameter value is passed from server to client, and

inout, the parameter value is passed in both directions.

It should be noted that parameters not of an interface type (in other words, that are not to be
represented by CORBA objects in the application) are always passed by value. For objects,
however, the value of their IOR is passed, i.e., the object’s state itself is not copied. This
standard approach can be modified by making use of value types that support passing of ob-
jects by value and is discussed in Section 4.6. (Details on parameter passing are given in Sec-
tion 5.17.)

When an operation is declared with the keyword oneway, invocations of that operation
carry best-effort semantics. This does not guarantee delivery of the call but implies that the
operation is to be invoked at most once. The caller gets an immediate return and does not
know whether the request has actually been executed by the server. For these reasons, only
in parameters are admissible for oneway operations, the result type must be void, and
there must be no list of exceptions.

All the ORBs we studied during our work showed the same behavior towards realization of
oneway operations. The calls were asynchronous and non-blocking.

If an operation specifies which exceptions may be raised as a result of its invocation, it de-
clares a non-empty list of exceptions. Such a list is introduced by the keyword raises and
contains the names of the exception types, separated by commas, and enclosed in parenthe-
ses.

 4.6 Value Types 53

Examples for operation declarations:

interface Calculator
{
 exception DivisionByZero { };
 // operation with result
 long add(in long op1, in long op2);
 // operation with result and exception
 double divide(in long dividend, in long divisor)
 raises(DivisionByZero);
 // oneway operation
 typedef sequence<long> Values;
 oneway void sum(in Values v);
 long get_result();
 // operation without result
 // (but note the inout parameter)
 void scalar_mult(in long s, inout Values v);
};

4.6 Value Types

Since version 2.3 of the CORBA standard, it is possible to pass objects by value rather than
by reference in an operation. For this, one uses a value type—which can declare the same
elements as an interface, thus, types, constants, exceptions, attributes, and operations. More-
over, a value type can provide a state definition and initializers that determine its initial state.
A number of different kinds of value types exist: regular, boxed, and abstract. Therefore, the
syntax rules for value type are numerous ((13)–(26)).

A regular value type’s state members are defined via specific attributes differing from the
definition of the attributes in an interface declaration in two aspects. On the one hand, they
are not defined with the usage of the keyword attribute (and also without readonly).
On the other hand, they must be declared public or private. Access to the value of
private state members is restricted to the marshaling code and the implementation code of
the value type’s operations; they are not transmitted to the server. Both sender and receiver
must provide an implementation of every transmitted value type so that invocations of the
value types’ operations are always local and not remote. (However, the implementation code
of a value type operation may contain remote invocations.)

Initializers can be defined for regular value types. With regard to their function, these initiali-
zers resemble the constructors in object-oriented programming languages although there is
no such thing as a default “initializer”. Syntactically, they are largely similar to operations
where the operation’s return type is substituted by the keyword factory and only in pa-
rameters are used. An example for a regular value type:

valuetype Time
{
 // private state members
 private unsigned short hours;
 private unsigned short minutes;
 private unsigned short seconds;

54 4 Introduction to the Interface Definition Language

 // initializer
 factory init(in unsigned short hours,
 in unsigned short minutes,
 in unsigned short seconds);
 // local operations
 unsigned short get_hours();
 unsigned short get_minutes();
 unsigned short get_seconds();
 boolean equals(in Time another_time);
};

If an initializer is not provided for every state member, there is no portable way for clients to
create an instance of this type and to transmit it to the server.

The example below demonstrates how a newly defined value type Amount is employed as
parameter type as well as result type in the declaration of an operation convert(), which
is an element of an interface CurrencyConverter.

valuetype Amount
{
 // initializer
 factory create(in double v, in string c);
 // local operation
 boolean compare(in Amount another_amount);
 // state members
 public double value;
 public string currency;
};

interface CurrencyConverter
{
 Amount convert(in Amount a, in string currency);
};

As noted above, the IDL distinguishes two further categories of value types, namely, boxed
and abstract value types. Boxed value types cannot inherit from other types, have no opera-
tions, and define only one single unnamed state member (see syntax rule (15)). They are
typically used as simple containers that can be easily represented in IDL. For example:

interface Subscriber
{
 void receive(in string message);
};

valuetype SubscriberSeq sequence<Subscriber>;

Value types can also be declared abstract. This means that they may not be instantiated.
No state members or initializers may be defined for abstract value types; only operation dec-
larations are admissible.

Value types may inherit from other value types, an interface, and any number of abstract in-
terfaces. As in the case of interface inheritance, a colon, ‘:’, is used between subtype and su-

 4.6 Value Types 55

pertypes. By means of the keyword supports, it is indicated that the value type also pro-
vides the functionality specified in an interface. For example:

abstract interface OutputFormatter
{
 string print();
};

interface Product : OutputFormatter
{
 attribute unsigned long product_id;
 attribute string name;
 attribute double price;
 attribute float vat_rate;
};

valuetype Amount supports OutputFormatter
{
 ... as above
};

interface Display
{
 void show(in OutputFormatter formatter);
};

The abstract interface OutputFormatter specifies an operation print(). This opera-
tion can, for example, be invoked in order to convert an object into a suitable string repre-
sentation. To similarly enable this for objects relying on an interface definition as well as for
values, an interface (in the example: Product) can inherit from OutputFormatter and
a value type (in the example: Amount) can support the interface OutputFormatter.
Now, the Display operation show() can be invoked for instances of both types.

With the exception of boxed value types, a value type may be subtype of one or many other
value types, provided that these supertypes are themselves not boxed. Also, regular as well as
abstract value types may support at most one interface. Should a value type be subtype of an-
other value type that already supports an interface, that subtype may not support an additional
interface. Therefore, the following example is an error:

interface IfaceExmpl1
{
 ...
};
interface IfaceExmpl2
{
 ...
};
valuetype VTExmpl1 supports IfaceExmpl1
{
 ...
};

56 4 Introduction to the Interface Definition Language

// error
valuetype VTExmpl2 : VTExmpl1 supports IfaceExmpl2
{
 ...
};

Here, value type VTExmpl2, as a subtype of VTExmpl1, must support IfaceExmpl1;
and, it is also declared to support the IfaceExmpl2 interface, which is not allowed by
IDL.

In Table 7, the inheritance relationships between value types and interfaces, respectively, are
summarized.

Table 7: Value Types, Interfaces, and Inheritance

 supertype

subtype

interface abstract in-
terface

abstract
value type

regular
value type

boxed va-
lue type

interface multiple multiple not
admissible

not
admissible

not
admissible

abstract interface not
admissible

multiple not
admissible

not
admissible

not
admissible

abstract value type single
(supports)

multiple
(supports)

multiple not
admissible

not
admissible

regular value type single
(supports)

multiple
(supports)

multiple single not
admissible

boxed value type not
admissible

not
admissible

not
admissible

not
admissible

not
admissible

4.7 Module Declarations

IDL modules provide a means of preventing name conflicts. A module constructs a new
scope so that identifiers that were already defined in another module can be reused. All
names of constants, interfaces, exceptions, etc., from the CORBA specification are contained
in the module CORBA.

A module definition begins with the keyword module and, subsequently, the module name.
Then, the definitions of the module’s constants, types, exceptions, interfaces, and values fol-
low; they are enclosed in ‘{’ and ‘}’. Nested modules are admissible (see syntax rules (3)).

Typically, an IDL specification has the following structure (which is, with respect to correct
IDL grammar, somewhat abbreviated):

module identifier
{
 constant declaration; ...
 type declaration; ...

 4.8 Scoping 57

 exception declaration; ...
 interface identifier [: superinterface]
 {
 constant declaration; ...
 type declaration; ...
 exception declaration; ...
 attribute declaration; ...
 operation declaration; ...
 }; ...
};

For example:

module eShop
{
 interface ShopServer
 {
 // constant
 const short MAX = 100;
 // types
 typedef sequence<string, MAX> TaC;
 typedef sequence<string> ProductCatalog;
 // exception
 exception ProductOutOfStock { };
 // attributes
 readonly attribute TaC terms_and_conditions;
 readonly attribute long minimum_turnover;
 // operations
 void order(in string product, in long quantity)
 raises(ProductOutOfStock);
 ProductCatalog get_product_range();
 double get_price(in string product);
 };
};

4.8 Scoping

The scope of an identifier is the IDL code where its name can be used. IDL provides multiple
nested levels of scope. At the highest level, each IDL file constitutes a scope. Within a file,
the modules, interfaces, value types, structures, unions, operations, and exceptions each de-
fine their own smaller scope. For operations, scope is delimited by the parentheses, ‘(’ and
‘)’; otherwise, ‘{’ and ‘}’ embrace the scope. An identifier’s scope begins immediately fol-
lowing its declaration and extends until the end of the respective module, interface, value
type, structure, union, operation, or exception declaration. It ends immediately preceding the
closing ‘}’ or ‘)’. Irrespective of case, an identifier can only be defined once in a scope.
However, scopes may be nested and identifiers can be redefined in nested scopes.

The specifications of an entire IDL file, together with the contents of any files included by a
#include directive, form the global scope. Identifiers from a surrounding scope are valid
in an inner scope. They can also be redefined in the inner scope in order to name a different
entity. For example:

58 4 Introduction to the Interface Definition Language

module M
{
 typedef short M; // error: redefinition in same scope

 typedef fixed<6, 2> T;
 interface I
 {
 attribute T x;
 void m(); // correct: redefinition in inner scope
 };
};

Identifiers from other scopes may be used—once they are defined—if they are fully qualified
with the name of their module, interface, value type, structure, union, and exception, respec-
tively. The qualified name is constructed by prefixing the identifier with the module, inter-
face, ..., exception name and a “::”. For example:

module Currencies
{
 enum Currency
 {
 EUR, GBP, JPY, USD
 };
 typedef fixed<10, 6> ExchangeRate;
 exception InvalidCurrency { };
 interface CurrencyServer
 {
 ExchangeRate get_exchange_rate(in Currency c)
 raises(InvalidCurrency);
 };
};

module BankApplication
{
 typedef fixed<10, 2> Amount;
 interface CurrencyConverter
 {
 // parameter types qualified
 // since declared in another module
 Amount convert(in Amount a,
 in Currencies::Currency source,
 in Currencies::Currency target)
 raises(Currencies::InvalidCurrency);
 };
};

In this example, module Currencies contains the declarations of the numeric type Ex-
changeRate, different abbreviated currency names (Currency), and an exception (In-
validCurrency) as well as the interface CurrencyServer. Some of these declara-
tions, e.g., the data type Currency, might be useful for other applications. Even if such an
application is specified in a different module, it can use these declarations by qualifying their
names with the module name, e.g., Currencies::Currency.

 4.8 Scoping 59

Had we defined the exception InvalidCurrency not in the scope of module Curren-
cies but in the scope of the interfaces CurrencyServer, then, the raises expression
of the BankApplication’s operation convert() would need further qualification and
use Currencies::CurrencyServer::InvalidCurrency as an exception name.

Identifiers from the global scope can be accessed when their names are prefixed with a sim-
ple “::”. For example, the following would be correct IDL code:

exception E
{
 long l;
};

module M
{
 interface E
 {
 void m() raises(::E);
 };
};

However, such unnecessarily confusing code should be avoided in one’s own applications.
The OMG style guide recommends the use of file scope notation only in situations when no
other scope resolution exists. The style guide also recommends that file-level definitions not
be used; rather interface declarations and other definitions should always be embedded in
modules instead.

Qualification of names may be helpful in order to prevent ambiguities that might otherwise
arise from multiple inheritance, as in the example below:

interface A
{
 typedef long X;
};

interface B
{
 typedef short X;
};

interface C : A, B
{
 typedef X Y; // error: X ambiguous
 typedef A::X Y; // ok
};

Again, there must be good reasons, e.g., IDL code from a library that has to be reused, for
employing such a construction.

60 4 Introduction to the Interface Definition Language

4.9 Concluding Remarks

In the following sections, we provide some general comments concerning the development
of CORBA-based programs that are mainly intended for practical application.

4.9.1 Interoperability

If the CORBA standard is selected to be employed as the basis for developing multi-layered
distributed applications, it may happen that decisions concerning the application’s design are
made requiring different platforms or programming languages on the client and on the server
side. These decisions might further have as a consequence that, during development of the
business logic server, a different ORB has to be used as on the client side. This, in turn, im-
plies interoperability of the involved ORBs. Since CORBA 2.0 provided the framework of
interoperability for the collaboration of various ORBs, no principal problems should be ex-
pected here.

However, when ORBs of different vendors are employed that are, in addition, based on dif-
fering versions of the CORBA specification, certain problems might arise. In that case, de-
velopers first should determine to what extent the available products actually support all the
elements defined by IDL. Only thereafter, can definition of the interfaces and development of
the application commence. Especially in the case of multi-department or multi-company pro-
jects based on diverse products, it has to be ensured that IDL types or keywords not sup-
ported by all of them are not used. This aspect is also of central importance with regard to
Enterprise Application Integration and Supply Chain Management since, in that context, dif-
ferent ORB products relying on differing versions of the standard, in particular, come into
operation and have to be integrated.

The ORB products available on today’s market support the CORBA standard’s different ver-
sions more or less completely. Due to the mentioned reasons, the basis for CORBA applica-
tions where interoperability aspects are essential should always be CORBA version 2.0. Fur-
thermore, keywords and data types introduced in higher versions of the standard such as, e.g.,
abstract, fixed, local, long double, supports, truncatable, value-
type, wchar, and wstring should not be used; or, at a minimum, they should not be em-
ployed without an initial exploration determining whether or not all involved ORBs support
them to the required extent.

4.9.2 Using Anonymous Types

In a number of places, the IDL syntax rules permit developers to define anonymous types. In
the current specification of the CORBA standard, such definitions are deprecated since they
caused problems for some language mappings. For example, it is allowed but deprecated to
define an anonymous sequence as in the example below:

typedef sequence<sequence<float> > matrix;

Note that, in order to prevent them from being translated as operator “>>”, white space has
to separate the two ‘>’ characters.

 4.10 Exercises 61

Such a construction should now be realized as follows:

typedef sequence<float> columns;
typedef sequence<columns> matrix;

The new rule also affects other parts of the IDL. The following valid IDL definitions,

const string<5> SYSTEM = "CORBA";

interface I
{
 readonly attribute wstring<3> INSTITUTION = "OMG";
 sequence<long, 5> become_member();
};

should now be replaced by

typedef const string<5> SystemType;
const SystemType SYSTEM = "CORBA";

interface I
{
 typedef wstring<3> InstitutionType;
 readonly attribute InstitutionType INSTITUTION = "OMG";
 typedef sequence<long, 5> Result;
 Result become_member();
};

4.10 Exercises

1. IDL conformity

a) Find out whether your IDL compiler accepts identifiers that only differ with respect to
upper- and lower-case.

b) What is the effect of including a line comment within a block comment?
c) Which characters are contained in the following string constant: const string s

= "\xf" "f" "\010" "10";
d) How can the character " be inserted into a string constant?
e) Find out whether your IDL compiler accepts the prefix L for literals of types wchar

and wstring.

2. Nesting

a) Is it admissible to define a module within another module definition?
b) Is it admissible to define an interface within another interface definition?
c) Is it admissible to define a structure within another structure definition?

3. Inheritance

a) Can an interface inherit from multiple other interfaces?
b) Can an abstract interface be supertype of a non-abstract interface?

62 4 Introduction to the Interface Definition Language

c) Can an abstract interface be subtype of a non-abstract interface?
d) Can a value type inherit from multiple other value types?
e) Can a value type support multiple interfaces?

4. Is it possible to pass a CORBA object as well as the instance of a value type as an argu-
ment to an operation that has an interface type as parameter?

5. Find all errors in the following module declaration. How would a correct solution look?

module Applications
{
 module ECommerce
 {
 typedef String Text;
 interface ShopServer
 {
 struct Product
 {
 int product_no;
 Text name;
 double price;
 float vat_rate;
 };
 typedef sequence<Product> ProductCatalog;
 void order(in Product, in int quantity);
 ProductCatalog get_product_catalog();
 };

 interface DatabaseAdapter
 {
 typedef sequence<Text> ResultSeq;
 exception Disconnected { };
 void connect();
 ResultSeq query(Text sql)
 throws Disconnected();
 void disconnect();
 };
 }
}

6. Determine the value of the two symbolic constants.

const short S = 0x0010>>1;
const long long L = ~0x00ff;

7. When the IDL compiler translates the definition of an interface, it replaces symbolic con-
stants by their values. What does this imply for the parameter of the operation f(),
which C inherits from A?

const long L = 3;
interface A
{
 typedef float Par[L];

 4.10 Exercises 63

 void f(in Par x);
};

interface B
{
 const long L = 30;
};

interface C : B, A
{
};

8. Use qualified names to produce clarity in interface D.

module A
{
 interface B
 {
 typedef string<100> Text;
 };
};

interface C
{
 typedef string<1000> Text;
};

interface D : A::B, C
{
 attribute Text small;
 attribute Text big;
};

9. Use qualified names to produce clarity in this IDL file.

enum Color
{
 RED, ORANGE, GREEN, YELLOW
};

module M
{
 enum Color
 {
 RED, GREEN, BLUE
 };
 const ::Color c = ORANGE;
};

const Color c = M::RED;

5 IDL to Java Mapping

We have already discussed that CORBA’s independence of programming languages is based
primarily on the fact that only an IDL compiler translates the interface definition into a spe-
cific language. In order to standardize this process, the OMG has specified language map-
pings for Ada, C, C++, COBOL, Lisp, PL/1, Python, and Smalltalk. In this chapter, we ad-
dress the “OMG IDL to Java Language Mapping” [OMG02].

5.1 Introductory Remarks

All Java classes and interfaces, which constitute the essential specification of the CORBA
standard, are to be found in the Java package org.omg and in packages on a lower level in
the hierarchy such as org.omg.CORBA. The package org.omg also contains several
classes needed to access diverse CORBA Services. For example, Java classes and interfaces
related to OMG’s Naming Service are located in the package org.omg.CosNaming while
those pertaining to the Event Service are members of the packages org.omg.CosEvent-
Comm and org.omg.CosEventChannelAdmin. All other Java implementations of
elements defined in the CORBA specification or in the CORBA Services framework also
adhere to this packaging scheme.

If a new type is introduced in an IDL definition, the IDL to Java compiler generates several
files, each containing a Java class declaration related to that type, from this type’s IDL speci-
fication. Thus, for each newly defined IDL type, a <type>Holder as well as a <ty-
pe>Helper file, where <type> stands for the type name, are created. These are studied in
more detail in Sections 5.4 and 5.5, respectively. Depending on the IDL type, additional files
and classes are created; they are discussed at the appropriate place in the following sections.

5.2 Names

In general, IDL identifiers are mapped to Java identifiers with no change. However, there are
some exceptions to this rule. These were introduced in order to avoid name collisions with
Java keywords, Java constants, and methods from class java.lang.Object. In such
cases, the respective identifier is appended with the prefix ‘_’. The basis for such “reserved”
names is the Java Language Specification 1.0, First Edition, Section 3.9 [GJS96], where the
following Java keywords are listed:

abstract default if private throw

boolean do implements protected throws

break double import public transient

byte else instanceof return try

case extends int short void

66 5 IDL to Java Mapping

catch final interface static volatile

char finally long super while

class float native switch

const for new synchronized

continue goto package this

The additional Java constants that might collide with an IDL identifier are true, false,
and null.

Also, the methods of class java.lang.Object (see the Java Language Specification 1.0,
First Edition, Section 20.1 [GJS96]) belong to the reserved names whose collision with IDL
identifiers has to be excluded. They are given below:

clone equals finalize getClass hashCode

notify notifyAll toString wait

These method names might cause problems since the class java.lang.Object serves as
superclass of all Java classes and, thus, also of all Java implementations of interfaces defined
in IDL. Should such an IDL interface define an operation that has a correspondingly named
method counterpart in java.lang.Object (e.g., wait()), then directly adopting this
name in the Java implementation would result in overriding the inherited method, which
would, in most cases, not be intended or even recognized and would lead to undesirable side-
effects. The IDL compiler would, therefore, map the valid IDL identifier wait to the Java
identifier _wait, normally without indicating this intervention.

5.3 Mapping for Basic Data Types

Following Table 8 shows the mapping of IDL’s basic types to Java.

Table 8: Mapping for Basic Types

IDL Type Java Type Exceptions
boolean boolean

char char CORBA::DATA_CONVERSION

wchar char CORBA::DATA_CONVERSION

octet byte

string java.lang.String CORBA::MARSHAL

CORBA::DATA_CONVERSION

wstring java.lang.String CORBA::MARSHAL

CORBA::DATA_CONVERSION

short short

unsigned short short

long int

 5.4 Holder Classes 67

unsigned long int

long long long

unsigned long
long

long

float float

double double

long double not defined yet

fixed java.math.BigDecimal CORBA::DATA_CONVERSION

any org.omg.CORBA.Any

The exceptions listed in the last column may be raised at run-time because the Java type is
larger than IDL and, therefore, can contain inadmissible values.

Note that the unsigned IDL types unsigned short, unsigned long, and unsigned
long long are mapped to Java’s signed types short, int, and long. For developers,
this means that they are responsible for ensuring that the values of such a type do not become
negative. Furthermore, the IDL type long is mapped to int in Java. The reason is that the
range of the latter is sufficient to hold all admissible values of the IDL type. The IDL type
long double is not yet supported by the Java mapping.

5.4 Holder Classes

In order to pass parameters that have been defined inout or out, so-called holder classes
are generated. For the basic IDL data types such as long or any, corresponding classes are
already available in package org.omg.CORBA, for example, org.omg.CORBA.Long-
Holder and org.omg.CORBA.AnyHolder.

If an IDL interface provides new user-defined types, then, during translation of the IDL file,
the IDL compiler automatically generates the appropriate holder classes. Naming of these
compiler-generated classes always follows the same schema, where

<type> becomes <type>Holder in Java.

Thus, for a user-defined IDL type T, the holder class THolder is generated. The example
below shows the general layout of a holder class THolder, where it is irrelevant whether T
is a basic IDL type already supported by a holder class included in the runtime library or a
user-defined type for which the IDL compiler still has to generate the holder class.

// THolder.java

public final class THolder implements
 org.omg.CORBA.portable.Streamable {

 public T value;

 public THolder () { }
 public THolder (T initial) {

68 5 IDL to Java Mapping

 value = initial;
 }
 public org.omg.CORBA.TypeCode _type () {
 ...
 }
 public void _read(
 org.omg.CORBA.portable.InputStream is) {
 ...
 }
 public void _write(
 org.omg.CORBA.portable.OutputStream os) {
 ...
 }
}

In addition to an instance variable value, the holder class declares two constructors. The
first is a default constructor that initializes this variable to its default value—false for boo-
leans, 0 for arithmetic types, null for reference types. The second constructor, an argument
of the (Java) type T, must be passed and is used to initialize the variable value. The holder
class also declares the methods _read() and _write(), which are needed for marshal-
ing, as well as a method _type(), which returns the type (more precisely, the TypeCode of
the type) of the stored value.

In the following, Table 9, the holder classes already defined in package omg.org.CORBA
are compiled.

Table 9: Pre-defined Holder Classes

IDL Type Holder Class

boolean BooleanHolder

char CharHolder

wchar CharHolder

octet ByteHolder

string StringHolder

wstring StringHolder

short ShortHolder

unsigned short ShortHolder

long IntHolder

unsigned long IntHolder

long long LongHolder

unsigned long long LongHolder

float FloatHolder

double DoubleHolder

fixed BigDecimalHolder

long double -

Object ObjectHolder

any AnyHolder

 5.5 Helper Classes 69

5.5 Helper Classes

Helper classes are relevant in the context of user-defined IDL types. They are helpful for de-
termining and manipulating type information, enable insertion and extraction of instances of
the newly defined type into or from an Any (IDL any), and provide methods to read from an
input stream or write to an output stream. Like the holder classes described above, helper
classes are automatically generated by the IDL compiler for each user-defined IDL type.
Naming of the compiler-generated holder classes follows a schema, where

<type> becomes <type>Helper in Java.

Thus, for an interface T, a helper class THelper is generated. The following example shows
parts of the helper class THelper with the most relevant methods:

// THelper.java

public final class THelper {
 public static T narrow(org.omg.CORBA.Object obj) {
 ...
 }
 public static void insert(org.omg.CORBA.Any any, T s) {
 ...
 }
 public static T extract(org.omg.CORBA.Any any) {
 ...
 }
 public static org.omg.CORBA.TypeCode type() {
 ...
 }
 public static String id() {
 return "IDL:T:1.0";
 }
 public static T read(
 org.omg.CORBA.portable.InputStream is){
 ...
 }
 public static void write(
 org.omg.CORBA.portable.OutputStream os, T s) {
 ...
 }
}

The method narrow() can be used for down-casts of server-side object references. A
down-cast is a typecast that converts a type K to a type L, where K is a supertype of type L.
The methods id() and type() provide useful information on the type. While method
id() returns the type as a string, the result of calling type() is a TypeCode (see Section
6.5 for details). The methods insert() and extract(), respectively, define functional-
ity to store an instance of the newly defined type in an instance of a container of type Any or,
reciprocally, to extract a T object from the container. The methods read() and
write()—which are also called by the holder’s _read() and _write()—are necessary
for marshaling and not directly called by application programmers. There are no helper

70 5 IDL to Java Mapping

classes for the pre-defined basic IDL types. Their functionality is directly accomplished by
the ORB’s runtime library.

5.6 Mapping for Modules

IDL modules, which are defined with the introductory keyword module, are mapped by the
IDL compiler to a Java package with the same name. The module’s type declarations are
mapped to corresponding Java class declarations or interface declarations and become part of
the generated package.

For example, the result of the IDL definition of this module,

module Demo
{
 ...
};

is the Java declaration

package Demo;

In the case of nested modules, for example,

module Outer
{
 ...
 module Inner
 {
 ...
 };
};

the Java code, which is generated in order to realize the declarations contained in module
Inner, begins with the package declaration

package Outer.Inner;

For that reason, Java programs intending to use elements declared in package Outer as well
as elements from package Outer.Inner without each time fully qualifying their names
with the package names have to import both packages separately. Since Java does not in-
clude lower-level packages, the following two statements would have to be included in the
corresponding Java files:

import Outer.*;
import Outer.Inner.*;

 5.7 Mapping for Constants 71

5.7 Mapping for Constants

The Java mapping of constants depends on the scope in which they are introduced. If the
constant is defined as an element of an interface, then it is mapped to an instance variable of
the same name in the Java interface called <interface>Operations generated by the
IDL compiler. <interface> stands for the interface’s name here. For example, the IDL
interface

module M
{
 interface I
 {
 const long L = -1;
 };
};

results in, among others, a file IOperations.java containing the code

package M;

public interface IOperations {
 int L = (int)(-1L);
}

If the constant, however, is not declared within an IDL interface, then the IDL compiler gen-
erates a public Java interface of the same name. This interface has an instance variable
named value, which is initialized with the constant’s value. For example, the IDL specifi-
cation

module M
{
 const double D = 1.0;
};

is mapped to the Java interface

package M;

public interface D {
 double value = 1.0;
}

Some IDL compilers, e.g., the IDL compiler which is part of Sun’s JDK, augment the code,
which is prescribed logically by the standard, by attaching additional Java modifiers so that
the result could look like this:

package M;

public interface D {
 public static final double value = (double)(1.0);
}

72 5 IDL to Java Mapping

Note that in the above examples, as well as in all future examples, we follow OMG’s style
guide and embed all IDL definitions within a module.

5.8 Mapping for typedefs

We have already discussed that the typedef can be used in order to associate an identifier
with a data type and that this is in some cases mandatory (fixed, string, sequence, and array
types). Since Java does not support such constructs, for all types newly introduced via
typedef, a new helper class is generated.

5.9 Mapping for structs

An IDL type defined as a struct results in the generation of a Java class with the same
name, which is specified public and final. The corresponding holder and helper classes
are generated as well. The generated Java classes are stored in their own Java package. The
name of the package depends upon whether the structure was defined in the scope of an IDL
module or within an interface definition. In the first case, the package name is the name of
the module. In the second, the package name <interface>Package is used. For exam-
ple:

module M
{
 struct s1
 {
 unsigned long ul;
 };

 interface I
 {
 struct s2
 {
 double d;
 };
 };
};

Here, the Java class s1 is stored in package M while class s2 is allocated to the package
M.IPackage. For applications that want to refer to class s1 by its simple name, this im-
plies that they have included the import statement import M.*;. Applications referring to
s2, similarly, need an import M.IPackage.*; or they have to use qualified names. If
both structures are needed, both import statements are necessary.

For all members of a struct definition, public instance variables are inserted into the
code of the generated Java class. Also, two public constructors are generated. The first is a
default constructor; the second is a constructor that needs arguments with initializers for all
members of the structure in the ordering of their IDL specification.

 5.9 Mapping for structs 73

For example, the code clipping from an interface definition

struct Date
{
 unsigned short day;
 unsigned short month;
 unsigned short year;
};
...

would generate this Java class:

public final class Date
 implements org.omg.CORBA.portable.IDLEntity {

 public short day;
 public short month;
 public short year;

 public Date() { }

 public Date(short day, short month, short year) {
 this.day = day;
 this.month = month;
 this.year = year;
 }
}
...

If a typedef declaration is used to introduce a new name for a data type previously de-
clared, this has no influence on the generated Java code. For example, the fragment from an
interface definition

struct Date
{
 unsigned short day;
 unsigned short month;
 unsigned short year;
};

typedef Date Birthday;

Birthday get_birthday(in string name, in string surname);
...

would have the result that a Java method get_birthday() with the “original” return type
is generated:

Date get_birthday(String name, String surname);

This not only holds for return values of operations but also for other possible usage of type
identifiers declared via typedef such as, e.g., as a parameter in an operation’s signature, as
a name of an attribute, etc.

74 5 IDL to Java Mapping

5.10 Mapping for enums

An enumerated type specified in IDL is mapped to a Java class with the same name, which is
declared public and final. The corresponding holder and helper classes are generated as
well. The generated Java classes are stored in their own Java package. The name of the pack-
age is determined following the same rules as discussed above in Section 5.9 on the mapping
of structures.

The individual enumerators from the IDL definition of an enumerated type are mapped to
public final class variables. Furthermore, two methods, value() and from_int(),
are generated. The first is declared public and may be used to retrieve the numeric value
(of Java type int) associated with an enumerator. Values are assigned sequentially starting
with 0. The second is a public class method, which, reciprocally, returns an instance of the
enumerated type from its numerical value. If the specified value is out of range, an exception
of type org.omg.CORBA.BAD_PARAM is raised. A fragment of the Java class for the e-
numerated type

enum Weekday { MON, TUE, WED, THU, FRI, SAT, SUN };

is shown below:

public final class Weekday
 implements org.omg.CORBA.portable.IDLEntity {

 private int value = -1;
 public static final int _MON = 0;
 public static final Weekday MON = new Weekday(_MON);
 public static final int _TUE = 1;
 public static final Weekday TUE = new Weekday(_TUE);
 public static final int _WED = 2;
 public static final Weekday WED = new Weekday(_WED);
 public static final int _THU = 3;
 public static final Weekday THU = new Weekday(_THU);
 public static final int _FRI = 4;
 public static final Weekday FRI = new Weekday(_FRI);
 public static final int _SAT = 5;
 public static final Weekday SAT = new Weekday(_SAT);
 public static final int _SUN = 6;
 public static final Weekday SUN = new Weekday(_SUN);

 public int value() {
 return value;
 }

 public static Weekday from_int(int value) {
 switch (value) {
 case _MON: return MON;
 case _TUE: return TUE;
 case _WED: return WED;
 case _THU: return THU;
 case _FRI: return FRI;
 case _SAT: return SAT;
 case _SUN: return SUN;

 5.13 Mapping for Exceptions 75

 default: throw new org.omg.CORBA.BAD_PARAM();
 }
 }
 ...
}

If a new enumerated type is defined via a typedef declaration, this does not generate an
additional class with the new name. This case is handled in the same way as in the example
above at the end of Section 5.9.

5.11 Mapping for Sequences

IDL sequences are mapped to Java arrays with the same name, irrespective of whether they
are bounded or unbounded in IDL. For bounded sequences, however, bounds checking is car-
ried out at run-time when they are marshaled as parameters during an operation invocation. If
the index for the corresponding Java array is out of bounds, an org.omg.CORBA.MAR-
SHAL exception is raised. Since a sequence is directly mapped to a convenient self-contained
Java construct, no dedicated class has to be generated. Instead, the IDL compiler inserts the
Java array into the code wherever the sequence type is needed. Nevertheless, the complemen-
tary holder and helper classes are necessary. The two IDL definitions,

typedef sequence<long> UnboundedLongSequence;

and

typedef sequence<long,10> BoundedLongSequence;

therefore result in generating four classes: UnboundedLongSequenceHolder, Un-
boundedLongSequenceHelper, BoundedLongSequenceHolder, and Bound-
edLongSequenceHelper.

5.12 Mapping for Arrays

The mapping of IDL arrays is the same as that of bounded IDL sequences. They are also
mapped to Java arrays and bounds are checked at run-time. Only the respective holder and
helper classes are generated and, everywhere the IDL array type is needed, the Java array is
directly inserted in the generated code. Java’s subscripting operator “[]” is applied to access
the elements of the array.

5.13 Mapping for Exceptions

In CORBA, there are two kinds of exceptions: CORBA system exceptions, which may be
raised through the CORBA runtime, and user exceptions, which application developers can
define on the IDL level. In Java, exceptions from the first category are implemented as sub-
classes of the class java.lang.RuntimeException, which, for its part, inherits from
the class java.lang.Exception. User-defined exceptions, however, are implemented

76 5 IDL to Java Mapping

as subclasses of the class org.omg.CORBA.UserException, which inherits from the
class java.lang.Exception and implements the Java interface org.omg.COR-
BA.portable.IDLEntity.

Figure 8 shows the class diagram for the exception class hierarchy of CORBA’s exception
classes as implemented in Java.

To a large extent, the mapping of IDL exceptions corresponds to that of structs. For each
IDL exception, a public final Java class with the same name is declared. Also, the cor-
responding holder and helper classes are generated and all these classes are stored in a Java
package that, depending on whether the exception is defined on a module or an interface
level, is named according to the rules discussed above in Section 5.9 on the mapping of
structures.

The Java class implementing an IDL exception has two or three constructors, depending on
whether it is a simple exception or a constructed exception that provides information specific
to the exceptional condition (see Section 4.4). In the case of a simple exception, a default
constructor and a constructor with a parameter of type String are generated. The latter can
be passed a description of the reason for the exception.

In the case of a constructed exception, two constructors are generated in addition to the de-
fault constructor. The first needs initial values for all members of the exception; the second
also expects a first string reason argument.

java.lang.RuntimeException

org.omg.CORBA.SystemException

org.omg.CORBA.UNKNOWNorg.omg.CORBA.OBJECT_NOT_EXIST

org.omg.CORBA.UserException

org.omg.CORBA.UnknownUserException

...

java.lang.exception<<interface>>
org.omg.CORBA.portable.IDLEntity

<<implements>>

Figure 8: Exception Classes of the Java Mapping

 5.13 Mapping for Exceptions 77

The IDL code snippet below,

module Example
{
 exception Error { };

 exception ErrorReport
 {
 string error_message;
 short error_code;
 string date;
 };
};

thus results in the following Java code:

// Error.java

package Example;

public final class Error
 extends org.omg.CORBA.UserException {

 public Error() {
 ...
 }
 public Error(String reason) {
 ...
 }
}

// ErrorReport.java

package Example;

public final class ErrorReport
 extends org.omg.CORBA.UserException {

 public String error_message;
 public short error_code;
 public String date;
 public ErrorReport() {
 ...
 }
 public ErrorReport(String error_message,
 short error_code, String date) {
 ...
 }
 public ErrorReport(String reason,
 String error_message, short error_code,
 String date) {
 ...
 }
}

78 5 IDL to Java Mapping

5.14 Mapping for Interfaces

Here, three cases have to be distinguished that were already introduced in Section 4.5 and
that differ with regard to their IDL to Java mapping:

non-local, non-abstract interfaces (“regular” interfaces),

local interfaces, and

abstract interfaces.

In the following subsections, these three interface types are treated individually.

5.14.1 Regular IDL Interfaces

Non-local, non-abstract IDL interfaces, so-called regular interfaces, are mapped to two pub-
lic Java interfaces by the IDL compiler:

the operations interface, and

the signature interface.

The operations interface has a name that is composed from the identifier of the original IDL
interface and the suffix Operations, which is appended at the end. It contains the map-
pings of all the operations of the IDL interface, including the accessors for the interface’s at-
tributes. If an operation of the IDL interface raises an IDL exception, the corresponding Java
method must throw the corresponding Java exception (see the list of IDL and Java excep-
tions in Appendix B). On the server side, the operations interface is implemented through the
generated skeleton code and the servant class created by the programmer.

The signature interface has the same name as the IDL interface; it extends the corresponding
operations interface and also the Java interfaces org.omg.CORBA.Object as well as
org.omg.CORBA.portable.IDLEntity. On the client side, it is implemented by the
generated stub code and used as signature type in method declarations when interfaces of the
specified type are used in other interfaces. Moreover, clients use references to objects im-
plementing that interface so that one could informally call it an “accessor interface”.

In addition to these two Java interfaces, once again, helper and holder classes are generated
for each IDL interface type.

Furthermore, the classes <interface>POA, <interface>POATie, and _<inter-
face>Stub are created, where <interface> stands for the name of the interface. These
classes are needed for executing a remote operation invocation.

The simple IDL interface definition

interface I
{
};

thus, has the result that the following java files are generated:

5.14 Mapping for Interfaces 79

I,

IOperations,

IPOA,

IPOATie,

_IStub,

IHolder, and

IHelper.

The class IPOA is relevant for the inheritance approach, which is most commonly used and
is discussed below in this section. There, class IPOA serves as superclass for the implemen-
tation of the Java interface I that developers have to carry through. In OMG terminology that
implementation is named servant. IPOA is an abstract class, which extends org.omg.
PortableServer.Servant and implements the Java interfaces IOperations (gen-
erated by the IDL compiler) as well as org.omg.CORBA.portable.InvokeHandler
(from the ORB runtime library). Since no implementation of the operations in the operations
interface IOperations is provided by IPOA, users subclassing IPOA (and thus writing
the servant) must develop implementations for the methods in IOperations.

 The class IPOATie is not generated by all IDL compilers. It is relevant for the delegation
approach, which is also discussed below. IPOATie is a subclass of class IPOA.

The public Java class _IStub is used on the client side to implement the client stub. As
usual, the IDL compiler-generated class IHolder is employed to transmit instances of the
data type I during invocations of operations with signatures specifying inout or out pa-
rameters of type I. The class IHelper supplies the already known helper methods.

It is always recommended to either start reading the operation declarations in the generated
operations interface whenever one is not sure how the IDL interface is mapped to Java or to
copy these declarations for one’s implementation of the servant.

We noted above that there are two possible approaches in CORBA that can be followed
when implementing the IDL interfaces of a CORBA-based application: the inheritance ap-
proach, which is also called the POA approach, and the delegation approach, which is also
called the tie approach. A programmer implementing the inheritance approach has to write a
servant class, which inherits from the superclass named <interface>POA, that the IDL
compiler generates. Since the POA class implements the operations interface, all functional-
ity of the IDL interface is then available. It should be noted that—in the case of programming
languages not supporting multiple inheritance—a disadvantage of this approach is that the
servant class obtains a superclass and, thus, has used up its possibilities to inherit from direct
superclasses.

When programmers follow the delegation approach, they make use of the <inter-
face>POATie class as a delegator class. This class adopts the role of the servant; however,
it does not execute the corresponding methods but simply delegates each operation invoca-
tion to a class that implements the methods declared in the Java interface <inter-
face>Operations with their intended functionality. Now, this class is not involved in an
inheritance relationship with the other IDL compiler-generated classes and is free to inherit

80 5 IDL to Java Mapping

from any user-defined class. A disadvantage of the delegation approach is that it introduces
one additional level of indirection, which reduces the application’s performance. For an
overview of the dependencies between the compiler-generated classes or interfaces and the
respective implementation class additionally required in each approach, have a look at Figure
12, provided in the context of the Counter example in Chapter 7.

5.14.2 Local IDL Interfaces

As is the case for regular interfaces, discussed above in Section 5.14.1, operations and signa-
ture interfaces as well as holder and helper classes are generated for local IDL interfaces. The
signature interface is somewhat modified and declared in this manner:

interface <interface>
 extends <interface>Operations,
 org.omg.CORBA.LocalInterface,
 org.omg.CORBA.portable.IDLEntity {
 ...
}

Note that, in comparison to the mapping for regular interfaces, the generated signature inter-
face features an added inheritance relationship to the Java interface org.omg.COR-
BA.LocalInterface while it does not extend org.omg.CORBA.Object any longer.
The classes <interface>POA, <interface>POATie, and _<interface>Stub are
no longer needed and, therefore, the compiler does not generate them. In this case of a local
interface, the IDL compiler-generated superclass <interface>LocalBase establishes
the basis for the implementation of the servant class by the programmer. These requirements
of the standard are, at present, implemented with varying conformity by current IDL com-
piler products. Starting from merely non-conformant naming of the generated classes up to
completely missing support for local interfaces.

5.14.3 Abstract IDL Interfaces

The mapping of abstract IDL interfaces exhibits the particularity that their signature and op-
erations interfaces are quasi merged so that only one single public Java interface is gener-
ated. This interface receives the same name as the IDL interface and is constructed following
similar mapping rules as the operations interface of a non-abstract IDL interface. However, it
is new that this interface takes on the role of the signature interfaces and, therefore, inherits
from org.omg.CORBA.portable.IDLEntity. As usual, the corresponding holder
and helper classes are generated as well following the known schemes of the IDL compiler. It
finally should be noted that the interface CORBA::AbstractBase, which is the IDL su-
pertype for all abstract interfaces, is mapped to the class java.lang.Object in Java.

5.15 Mapping for Value Types

IDL value types’ mappings to Java differ depending on their definitions. Therefore, we have
to differentiate three characteristics:

5.15 Mapping for Value Types 81

regular value types,

abstract value types, and

boxed value types

(see Section 4.6). In the following subsections, we consider these three cases consecutively.

5.15.1 Regular Value Types

A regular value type is mapped to an abstract Java class of the same name, which, for each
public state member of the value type, declares a corresponding public instance variable
and, analogically, for private state members, declares corresponding protected in-
stance variables. Normally, the class implements the interface org.omg.CORBA.port-
able.StreamableValue. But, if it was determined that the value type should resort to
user-defined marshaling routines, then the Java class instead has to implement the interface
org.omg.CORBA.portable.CustomValue. Both interface types are subinterfaces of
the interface org.omg.CORBA.portable.ValueBase so that the sole method that it
declares is, in any case, a member of the abstract Java class, which the IDL compiler gener-
ates. The ValueBase superinterface is defined as follows:

package org.omg.CORBA.portable;

public interface ValueBase extends IDLEntity {
 String[] _truncatable_ids();
}

In Section 4.6, we introduced the type Time as an example of a value type:

valuetype Time
{
 // private state members
 private unsigned short hours;
 private unsigned short minutes;
 private unsigned short seconds;
 // initializer
 factory init(in unsigned short hours,
 in unsigned short minutes,
 in unsigned short seconds);
 // local operations
 unsigned short get_hours();
 unsigned short get_minutes();
 unsigned short get_seconds();
 boolean equals(in Time another_time);
};

According to the procedure depicted above, this IDL definition is mapped to the Java class
Time below:

public abstract class Time
 implements org.omg.CORBA.portable.StreamableValue {

 private String[] _truncatable_ids = {"IDL:Time:1.0"};

82 5 IDL to Java Mapping

 protected short hours;
 protected short minutes;
 protected short seconds;

 public abstract short get_hours();
 public abstract short get_minutes();
 public abstract short get_seconds();
 public abstract boolean _equals(X.Time another_time);

 public void _write(
 org.omg.CORBA.portable.OutputStream os) {
 ...
 }
 public void _read(
 org.omg.CORBA.portable.InputStream os) {
 ...
 }
 public String[] _truncatable_ids() {
 return _truncatable_ids;
 }
 public org.omg.CORBA.TypeCode _type() {
 return TimeHelper.type();
 }
}

In addition to this abstract Java class, the IDL compiler generates the well-known helper and
holder classes for regular value types. Furthermore, in the case where, by means of the fac-
tory keyword, the value type specifies at least one initializer operation, a value factory in-
terface is also generated. This interface extends the interface org.omg.CORBA.portab-
le.ValueFactory and provides a method for each initializer declared in the IDL value
type. In the above example, this Java code would likewise be generated:

public interface TimeValueFactory
 extends org.omg.CORBA.portable.ValueFactory {
 Time init(short hours, short minutes, short seconds);
}

Developers now have to provide an adequate implementation of this value factory interface
and register it with the ORB so that it is accessible at run-time.

5.15.2 Abstract Value Types

According to OMG’s IDL to Java specification, an abstract value type is mapped to a Java
interface, which, in turn, extends the interface org.omg.CORBA.portable.Value-
Base. Recall that it is not possible to construct instances of an abstract value type. They are,
rather, designated to be used solely as supertypes for regular value types, which can then be
instantiated, or as supertypes for other abstract value types. The operations and attributes of
an abstract value type are included in the Java interface using the normal rules. And, again,
helper and holder classes are generated by the IDL compiler.

 5.15 Mapping for Value Types 83

5.15.3 Boxed Value Types

There are two general cases to consider concerning the mapping of boxed value types: value
types that are mapped to Java’s primitive types and those that are mapped to Java classes.

If the type contained in a boxed value type can be mapped to a primitive Java type (which
concerns, e.g., the IDL types float, long, wchar, boolean, and octet), then, a Java
class with the same name is created for this value type. This class declares a public in-
stance variable named value, which has the Java type determined by the rules given in Sec-
tion 5.3. Moreover, the class implements the already known interface org.omg.COR-
BA.portable.ValueBase. An example:

valuetype FloatValue float;

interface DisplayFloatValue
{
 void display(in FloatValue fv);
};

For that example, the IDL compiler generates the files FloatValue.java, Float-
ValueHelper.java, and FloatValueHolder.java in order to map the boxed value
type as well as several files to map the IDL interface declaration according to the rules dis-
cussed in Section 5.14. We take a closer look at the files FloatValue.java and Dis-
playFloatValueOperations.java, in order to further exemplify some of the map-
ping details.

// FloatValue.java

public class FloatValue
 implements org.omg.CORBA.portable.ValueBase {

 public float value;
 private static String[] _ids = {FloatValueHelper.id()};

 public FloatValue(float initial) {
 value = initial;
 }
 public String[] _truncatable_ids() {
 return _ids;
 }
}

// DisplayFloatValueOperations.java

public interface DisplayFloatValueOperations {
 void display(FloatValue fv);
}

The example shows how a Java class is generated that adopts the name FloatValue from
the value type and is employed wherever the value type was utilized as a data type on the
IDL level. The IDL operation display() of interface DisplayFloatValue has, for
example, a parameter fv of value type FloatValue and, from the listing of file Dis-
playFloatValueOperations.java, one can see that the corresponding Java method

84 5 IDL to Java Mapping

display() accordingly declares a parameter of the respective Java reference type Float-
Value.

If, in contrast to the case just considered above, the data type managed by the boxed value
type is an IDL type that has to be mapped to a Java class (e.g., in case of a string, enum,
struct, sequence, any, or interface), then value type as such is mapped to this
class. Any further Java class with the name of the boxed value type is not generated. The ru-
les for mapping an IDL type to a Java class were already discussed in the previous sections of
this chapter.

One additional example shall demonstrate the difference from the first case:

valuetype FloatValueSeq sequence<float>;

interface DisplayFloatValueSeq
{
 void display(in FloatValueSeq fvs);
};

For this modified example, the IDL compiler now only generates the files FloatValue-
SeqHelper.java and FloatValueSeqHolder.java for the FloatValueSeq
type. For the interface, again, the known set of files is generated; here, we only single out the
file DisplayFloatValueSeqOperations.java in order to demonstrate how the
FloatValueSeq parameter of IDL operation display() is mapped:

// DisplayFloatValueSeqOperations.java

public interface DisplayFloatValueSeqOperations {
 void display(float[] fvs);
}

It becomes clear that the IDL type sequence<float> contained in the boxed value type
determines the simple mapping of the FloatValueSeq type to the Java type float[]
(see the mapping rules for sequences in Section 5.11).

As mentioned previously, it holds for all boxed value types, irrespective of the type they con-
tain, that the holder and helper classes are created as usual.

5.16 Mapping for anys

The data type any, which is the most flexible and powerful IDL type, is mapped to the Java
class org.omg.CORBA.Any. This class implements the Java interface org.omg.COR-
BA.portable.IDLEntity and provides all the methods needed to insert instances of all
Java counterparts of the pre-defined IDL types into an Any object (insert_<type>()) as
well as to extract them from an Any object (extract_<type>()). For unsigned integer
types, instead of the complete IDL keyword unsigned, only the letter u is prefixed. Table
10 below shows part of the methods declared in class Any. Should a conversion error occur
during extraction (e.g., a short is inserted and an attempt is made later to extract a boo-
lean) an exception of type org.omg.CORBA.BAD_OPERATION is thrown.

 5.16 Mapping for anys 85

In order to insert instances of the Java counterparts of user-defined IDL type into an Any ob-
ject and to extract them from an Any object, respectively, the insert() and extract()
methods of the helper classes are used (see Section 5.5).

Table 10: Insert and Extract Methods for Pre-defined IDL Types

IDL Type Any Methods

short short extract_short();
void insert_short(short);

unsigned
short

short extract_ushort();
void insert_ushort(short);

long int extract_long();
void insert_long(int);

unsigned
long

int extract_ulong();
void insert_ulong(int);

long long long extract_longlong();
void insert_longlong(long);

unsigned
long long

long extract_ulonglong();
void insert_ulonglong(long);

float float extract_float();
void insert_float(float);

double double extract_double();
void insert_double(double);

boolean boolean extract_boolean();
void insert_boolean(boolean);

octet byte extract_octet();
void insert_octet(byte);

char char extract_char();
void insert_char(char);

wchar char extract_wchar();
void insert_wchar(char);

string String extract_string();
void insert_string(String);

wstring String extract_wstring();
void insert_wstring(String);

fixed java.math.BigDecimal extract_fixed();

void insert_fixed(java.math.BigDecimal);

any org.omg.CORBA.Any extract_any();

void insert_any(org.omg.CORBA.Any);

valuetype java.io.Serializable extract_Value();
void insert_Value(java.io.Serializable);

Object org.omg.CORBA.Object extract_Object();
void insert_Object(org.omg.CORBA.Object);

86 5 IDL to Java Mapping

Objects of class Any can be obtained from the ORB, which is described in detail in Section
6.2, by invoking its method create_any().

5.17 Mapping for in, inout, and out Parameters

The parameter passing semantics of IDL in parameters are call-by-value. Normal Java pa-
rameters are generated; the same holds for the return result of an IDL operation. Java’s usual
parameter passing mechanism is employed and the result of a Java method is returned as a
result of the corresponding IDL operation. As long as the type of the in parameter is not a
value type, for the Java side, it holds that during run-time the Java object to be passed is gen-
erated and owned by the caller. In the method itself, the argument may not be modified and
the receiver may not retain a reference to the argument beyond the duration of the call. Viola-
tion of this rule may lead to unexpected system behavior. For in parameters of a value type,
conversely, a true copy of the Java object generated by the caller is created on the receiver’s
side; thus, the receiver can by all means modify that copy or store a reference to it beyond the
call’s duration.

IDL out and inout parameters define a call-by-result and combined call-by-value/result
semantics, respectively. They cannot be passed directly with the standard Java mechanism. In
these cases, the holder classes must be used instead (see Section 5.4). Suitable holder classes
for pre-defined IDL data types are already supplied by the ORB’s runtime library. In the case
of new, user-defined IDL types, the necessary holder classes are automatically generated by
the IDL compiler. In order to pass parameters, the client provides an instance of the respec-
tive holder class for each out and inout parameter, which is then passed (by value). The
content of the holder class object—the instance variable called value—can be modified
during the call. After the invocation, the client then can further process the possibly modified
content.

Java objects that are used as arguments for an out parameter or that are returned as an invo-
cation result are generated and owned by the receiver of the call. Once the call is completed,
ownership of these objects migrates to the caller and the receiver may no longer utilize a ref-
erence to these objects. Otherwise, unexpected system behavior may result. For inout pa-
rameters, rules corresponding to those discussed for pure in parameters combined with
those for out parameters apply in combination.

It should be noted that the rules identified above do not apply to primitive Java types or im-
mutable Java objects of type java.lang.String.

5.18 Mapping for Attributes

As already mentioned in Section 4.5.1, attributes are mapped via accessor methods for get-
ting and setting the attribute value; in the case of readonly attributes, only the get method
is generated. The mapping of the attribute’s type follows the rules already discussed above.
For the two IDL attribute definitions

attribute unsigned long id;

 5.20 Exercises 87

and

readonly attribute string name;

the IDL compiler generates three Java methods:

int id() {
 // get method
};
void id(int i) {
 // set method
};
String name() {
 // get method only
};

5.19 Mapping for Operations

The mapping of an operation specified in IDL is the result of combining the diverse mapping
rules for the single parts constituting the operation and were already addressed above. The
operation name is built according to the mapping rules for identifiers (see Section 5.2). Re-
turn type and in parameters of the operation are mapped according to the rules for mapping
data types (see Sections 5.3, 5.9–5.16). For inout and out parameters, the appropriate
holder classes are utilized.

The example below may, once more, exemplify this procedure:

long notify(in string message,
 out unsigned long how_many);

The Java method that is generated is

int _notify(String message, IntHolder how_many) {
 ...
};

Since the operation name notify is a reserved Java identifier, it is prefixed with an under-
score. The return type long and the in parameter’s type string are mapped to the Java
types int and String, respectively (see Table 8). The out parameter of IDL type un-
signed long is mapped according to Table 9 and becomes an IntHolder.

5.20 Exercises

1. What is the purpose of helper classes?

2. What is the purpose of holder classes?

3. Does an IDL compiler also create AnyHelper and AnyHolder classes?

88 5 IDL to Java Mapping

4. Which of the files generated by an IDL compiler are needed by the client and which are

needed by the server?

5. Determine the mapping of the following Java interface:

interface Exercise
{
 attribute char c;
 readonly double d;
 void f(in string s);
 long g(in unsigned long ul);
 void h(inout short s1, out short s2);
};

6. Given module M:

module M
{
 interface I { attribute long l; };
 struct S { long l; };
 interface Test
 {
 void op(...);
 };
};

Insert the following definitions of operation op() and inspect what the IDL compiler
generates from M; analyze the operations interface TestOperations.

a) void op(in long x);

b) void op(in S x);

c) void op(in I x);

d) void op(out long x);

e) void op(out S x);

f) void op(out I x);

g) void op(inout long x);

h) void op(inout S x);

i) void op(inout I x);

6 Important Elements of the ORB
Runtime

The CORBA standard specifies a number of so-called pseudo objects that represent the ORB
runtime. Its core consists of the pseudo objects ORB, Object, and POA. Additional pseudo
objects support, e.g., the Dynamic Invocation Interface, the Dynamic Skeleton Interface, the
generation of TypeCodes, etc. The prefix “pseudo” indicates that pseudo objects should not
normally be regarded as conventional CORBA objects. They cannot be passed or returned as
arguments or return values of operation invocations and they do not inherit from CORBA::
Object like all regular CORBA objects.

Typically, the code for such pseudo objects is provided in the form of (class) libraries. Here,
the difficulty for the developers of the CORBA standard concerned the necessity of specify-
ing highly platform-related components of the CORBA system in a way suitable for different
programming languages. In order to avoid the need to define the core repeatedly for each
language, once again, one fell back on the idea of a language-independent specification by
means of an Interface Definition Language. However, in this context, the so-called Pseudo
IDL (PIDL), a variant of the well-known CORBA IDL, was employed.

In contrast to IDL, PIDL interfaces do not specify normal CORBA objects but, as a rule, de-
fine local objects for which invocations are executed differently, typically in the form of
usual function calls. Also, the rules for mapping an operation or an attribute to a specific
programming language may differ from the IDL rules and may even be adjusted depending
on the context. With the help of PIDL, CORBA’s pseudo objects are specified through
pseudo interfaces discussed subsequently. Instead of specifying PIDL interfaces, the OMG
recently has begun to describe “locality-constrained” objects, such as POA, with the help of
IDL. Here, the keyword local is employed.

In the following, we introduce the most important pseudo interfaces with which CORBA
programmers are again and again confronted. In addition, we explain the mapping of these
pseudo interfaces to the Java programming language. It should be noted that the pseudo in-
terface implementations of some ORB products provide vendor-specific extensions. These
supplementary methods are not standard-conformant; seen from the portability perspective,
they should not be used and we, therefore, do not discuss them here.

6.1 Initializing a CORBA Application

In order to be able to make use of the CORBA environment as middleware, i.e., to invoke the
operations of interface CORBA::ORB, an application first has to obtain a reference to an
ORB pseudo object. This is carried out by initializing the ORB environment with the help of
an invocation of operation ORB_init(), which is discussed in Section 6.1.1 below. In a
pure client application, it is then already possible to obtain references to service providing
CORBA objects, e.g., by means of the CORBA Naming Service, and to subsequently invoke

90 6 Important Elements of the ORB Runtime

operations on these objects. If, on the other hand, a server application provides these objects,
after the ORB’s initialization, a reference to an object adapter must be obtained. This
adapter, typically the root POA, serves as a connecting link between the ORB and the ser-
vants. It registers and activates servants (see Section 6.3.1 below). The corresponding func-
tionality is provided by the ORB pseudo object, found by invoking ORB_init(). This
pseudo object implements the ORB pseudo interface; the most important ORB operations are
dealt with in Section 6.2.

6.1.1 Operation ORB_init()

An invocation of operation ORB_init() initializes the ORB and, thus, constitutes the first
step in setting up the CORBA environment for a CORBA application. According to the stan-
dard, this operation is not regarded as belonging to the proper ORB pseudo interface, defined
by the operations explained below in Section 6.2. The following fragment from the PIDL
specification of the module CORBA illustrates the definition of this operation:

// PIDL

module CORBA
{
 typedef string ORBid;
 typedef sequence<string> arg_list;
 ORB ORB_init(inout arg_list argv,
 in ORBid orb_identifier);
 ...
};

The first argument the operation expects is of type arg_list, which denotes a sequence of
strings. This sequence can provide information that has to be passed to the ORB. The
second argument is of type ORBid (an alias for type string introduced for reasons of type
safety); it is employed to identify the ORB used.

The mapping of operation ORB_init() to the Java programming language is not covered
until the end of Section 6.2; this method is mapped to three Java class methods that are part
of the public abstract class ORB from package org.omg.CORBA. We therefore decided to
discuss them in connection with the mapping of the pseudo interface CORBA::ORB.

6.2 Pseudo Interface CORBA::ORB

As described above, the ORB is responsible for managing all communication, in its entirety,
in a distributed CORBA application. It plays the role of a communication bus whose main
task consists of transmitting client requests to the appropriate server. The ORB’s functional-
ity is described in the pseudo interface CORBA::ORB. This includes operations that deter-
mine initial references, e.g., a reference to the root POA, needed in order to make objects ac-
cessible to operation invocations. In addition, operations to convert an object reference to a
string representation and vice versa are provided. Furthermore, a number of operations
concerning the Dynamic Invocation Interface, the Dynamic Skeleton Interface, or the genera-

 6.2 Pseudo Interface CORBA::ORB 91

tion of TypeCodes are provided and numerous additional operations are defined that we
cannot discuss here due to reasons of space.

6.2.1 Operation list_initial_services()

This operation is typically invoked at the start time of an application. It determines and lists
the available CORBA Services. The syntax is

typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;
ObjectIdList list_initial_services();

The return result of this invocation is a sequence of strings containing the names of the
available services. In order to obtain a reference to one or more of these services, the opera-
tion resolve_initial_references() may be invoked.

6.2.2 Operation resolve_initial_references()

To allow an application to determine at start time which objects have references available,
the operation list_initial_services() is provided. Very often, in a distributed ap-
plication, it is first of all necessary to obtain an object reference to the Naming Service. With
the help of this basic service, the application can then find further object references in a stan-
dardized way in order to communicate with other objects distributed in the network and to
request their services. In order to obtain a reference to the Naming Service, the operation
resolve_initial_references() is invoked and the string "NameService" is
passed as an argument. Here, it should be noted that such an invocation does not guarantee
that the ORB actually returns the respective object reference. Reasons for failure might be
that the Naming Service had not yet been started or that, although active, it is not known to
the ORB. Should a Naming Service be active, its reference must be communicated to the
ORB; otherwise, the service is not available to applications. Various solutions to solve that
problem exist, e.g., the passing of command-line parameters, the creation of configuration
files, or the setting of environment variables. In the case of an ORB that disposes of a dedi-
cated daemon or agent and an Implementation Repository, programmers can assume that the
reference to the Naming Service is actually found and returned. The specific, non-standardi-
zed components of such a proprietary solution would see to it that the service, should it be
inactive at the time of the invocation, is automatically started so that the expected object ref-
erence can be returned.

The PIDL notation of operation resolve_initial_references() is

typedef string ObjectId; // repeated for clarity
exception InvalidName {};
Object resolve_initial_references(
 in ObjectId identifier) raises(InvalidName);

Table 11 indicates the strings that may be passed at present as arguments to this operation
together with the types of the return results. The non-availability of a particular reference is
indicated by throwing an InvalidName exception.

92 6 Important Elements of the ORB Runtime

Table 11: Admissible Arguments and Corresponding Return Types
for resolve_initial_references()

ObjectId (alias string) Return Type

"RootPOA" PortableServer::POA

"POACurrent" PortableServer::Current

"InterfaceRepository" CORBA::Repository
or
CORBA::ComponentIR::Repository

"NameService" CosNaming::NamingContext

"TradingService" CosTrading::Lookup

"SecurityCurrent"
SecurityLevel1::Current
or
SecurityLevel2::Current

"TransactionCurrent" CosTransaction::Current

"DynAnyFactory" DynamicAny::DynAnyFactory

"ORBPolicyManager" CORBA::PolicyManager

"PolicyCurrent" CORBA::PolicyCurrent

"NotificationService" CosNotifyChannelAdmin::
EventChannelFactory

"TypedNotificationService" CosNotifyChannelAdmin::
TypedEventChannelFactory

"CodecFactory" IOP::CodecFactory

"PICurrent" PortableInterceptors::Current

"ComponentHomeFinder" Components::HomeFinder

"PSS" CosPersistentState::
ConnectorRegistry

6.2.3 Operations object_to_string() and
string_to_object()

The ORB interface contains definitions of two conversion operations. The first operation,
object_to_string(), may be invoked in order to convert a CORBA object reference
into its corresponding string representation. Following its conversion, the reference can, for
example, be stored in a file or a database. This operation is typically employed when differ-
ent ORBs are used on the server and on the client side or when CORBA Services of a vendor
differing from the ORB provider are to be used on the server or on the client side. The sec-
ond operation, string_to_object(), is the counterpart of the just described operation
object_to_string(). It is invoked whenever the reference to a CORBA object has to
be reconstructed from its string representation.

6.2 Pseudo Interface CORBA::ORB 93

The concrete syntax of both operations:

string object_to_string(in Object obj);
Object string_to_object(in string str);

6.2.4 Thread-Related ORB Operations

To support single-threaded ORBs as well as multi-threaded ORBs, several operations are
specified in the ORB interface:

boolean work_pending();
This operation returns an indication of whether or not the ORB needs the main thread
in order to perform its work. If the result is TRUE, the main thread is needed; a result
of FALSE indicates the opposite.

void perform_work();
If this operation is invoked by the application’s main thread, it instructs the ORB to
perform its task (e.g., to accept client requests). Should there be no tasks to complete,
the invocation does nothing and the main thread is not blocked.

void run();
Application developers primarily utilize operation run(). An invocation of this op-
eration has the result that the ORB is enabled to accept client requests at all. This op-
eration is blocking; after its invocation, the main thread of the server application is
suspended and the control flow is passed to the server-side ORB, which loops and
waits for client requests. The operation blocks until an invocation of operation
shutdown() is performed by some other thread.

void shutdown(in boolean wait_for_completion);
The operation shutdown() serves to release all resources obtained by the ORB and
to instruct it to shut down. The invocation also causes all object adapters to be de-
stroyed. With the argument of type boolean, one can affect whether the operation
blocks until the ORB finishes processing all actual requests and actually shuts down
(TRUE) or not (FALSE). If the value is FALSE, the operation invocation returns im-
mediately, even if the shutdown is not yet complete.

void destroy();
An invocation of this operation destroys the ORB so that its resources can be re-
claimed by the application. Normally, it is not invoked until a shutdown() was
performed. If shutdown() was not invoked, the shutdown process is started first.
In that case, the operation blocks during shutdown and subsequently destroys the
ORB.

6.2.5 Java Mapping of Pseudo Interface CORBA::ORB

In Java, the PIDL-specified pseudo interface ORB is mapped to a public abstract class ORB:

package org.omg.CORBA;

public abstract class ORB { ... }

94 6 Important Elements of the ORB Runtime

Let us first have a look at the mapping of operation ORB_init(), discussed in Section
6.1.1. There, we saw that ORB_init() is not part of the pseudo interface CORBA::ORB.
Since Java does not allow global methods, the mapping had to assign this operation to some
class, which, due to obvious reasons, was the ORB class. To satisfy Java’s language-specific
requirements and possibilities, the operation ORB_init() is not mapped to one single
method but to three public class methods, all members of class ORB and named with the
(overloaded) identifier init(). It has to be distinguished whether ORB initialization is per-
formed by a stand-alone Java application or by a Java applet, which is restricted by its more
rigorous security restrictions.

The first of these three mappings defines a simple default initialization method that returns a
reference to a severely limited singleton ORB object, which can solely be used to create Anys
or provide a factory for TypeCodes:

public static ORB init();

If called multiple times, this method always returns the same Java object. If that object is
used for other than the intended factory purposes, a system exception is thrown.

The second alternative of the init() method is specifically dedicated for stand-alone Java
application usage:

public static ORB init(String[] args, Properties props);

It is passed an array of strings that are the command-line arguments and a list of Java proper-
ties (see below).

A list of Java properties can also be passed to the third alternative of the method init().
Since this method should be used by an applet, the first argument should be a reference to
that applet:

public static ORB init(Applet app, Properties props);

There are two properties that every ORB must be able to interpret but that may be comple-
mented by additional, product-specific properties.

org.omg.CORBA.ORBClass: This property object can provide the name of an
ORB implementation class.

org.omg.CORBA.ORBSingletonClass: This property object can provide the
name of a singleton ORB implementation class that can only be used as a TypeCode
factory.

Setting these two properties is normally indispensable for the following reasons. Since ver-
sion 1.2, Sun’s Java Development Kit (JDK) itself includes classes and interfaces that im-
plement the CORBA runtime and that are by default loaded and employed. Often, however,
one intends to work with an independent ORB product; therefore, it is necessary to set both
properties in order to make the product-specific classes and interfaces available and to hide
the JDK’s built-in implementation.

6.2 Pseudo Interface CORBA::ORB 95

In principle, we have three options for setting the Java properties org.omg.CORBA.ORB-
Class and org.omg.CORBA.ORBSingletonClass:

using the class java.util.Properties,

using the file orb.properties, or

using command-line arguments when invoking the Java interpreter.

If it is admissible to hard code the necessary information directly into the source code, then
the first option is most suitable. The respective Java program must contain the following
code fragment:

Properties props = System.getProperties();
props.put("org.omg.CORBA.ORBClass",
 "YourORBClass");
props.put("org.omg.CORBA.ORBSingletonClass",
 "YourORBSingletonClass");
System.setProperties(props);

In this code example, the entries YourORBClass and YourORBSingletonClass
should only be seen as placeholders. In the first complete example in Section 7.6, we give the
concrete values that need to be set when working with the ORB products JacORB and Ope-
nORB, respectively. Subsequent to setting the properties, each of the two variants of the
ORB.init() method that expect a Properties argument may be invoked in order to
initialize the ORB runtime.

The second option is about specifying the classes to be loaded in a dedicated configuration
file for the JDK, the file orb.properties. In this simple text file, at least the two follow-
ing lines have to be inserted:

org.omg.CORBA.ORBClass=YourORBClass
org.omg.CORBA.ORBSingletonClass=YourORBSingletonClass

To enable the Java runtime to find that information, this properties file has to be copied into
the directory JDK_DIR\jre\lib; here, JDK_DIR is a placeholder for the installation di-
rectory of one’s Java distribution; a typical value might be c:\jdk1.5.0. Obviously, this
option is not advisable for a multi-user system where different users might have differing
preferences concerning the ORBs they want to utilize.

The third option provides the relevant information in the form of command-line arguments.
When invoking the Java interpreter, these have to be specified as follows:

java -Dorg.omg.CORBA.ORBClass=YourORBClass
 -Dorg.omg.CORBA.ORBSingletonClass=YourORBSingletonClass

YourApplication

Note that property names and values have to follow immediately after the -D flags without
any white space and that the above invocation must be stated on one single command line.
YourApplication denotes the client or server application to be started. The disadvan-
tages of this option are that the invocation is complex and error-prone and that one can easily

96 6 Important Elements of the ORB Runtime

forget the property names and their specification. One should at least provide a batch or
script file for program start in that case.

We now turn to the central operations that we already described above and that are in fact
part of the pseudo interface CORBA::ORB. First, we have the operation list_initi-
al_services(), discussed in Section 6.2.1. It lists the CORBA services available at the
start time of an application. As expected, it is represented in Java by the method

public abstract String[] list_initial_services();

More interesting is the mapping of the operation resolve_initial_references(),
which we addressed in Section 6.2.2. With its help, we obtain object references to the ser-
vices available at the start time. The Java mapping has this form:

public abstract org.omg.CORBA.Object
 resolve_initial_references(String object_name)
 throws org.omg.CORBA.ORBPackage.InvalidName;

With the String argument, we provide the method with the name of the service that is
needed. In Table 11, the names of the services that every ORB implementation must under-
stand are listed. If the name argument is unknown, an InvalidName exception is thrown.
In the concrete examples in the second part of the book, we use this method very often to ob-
tain a reference to the root POA by invoking it with the string "RootPOA" (in this example,
it is assumed that orb references a correctly initialized ORB pseudo object):

org.omg.CORBA.Object obj =
 orb.resolve_initial_references("RootPOA");

From Table 11, we can see that the IDL return type of this invocation is PortableSer-
ver::POA and, therefore, org.omg.PortableServer.POA on the Java level. To con-
tinue with the above example, the variable obj must be converted to the correct Java type.
For that conversion, the narrow() method from class POAHelper, which we described in
Section 5.5 should be used:

org.omg.PortableServer.POA rootPOA =
 org.omg.PortableServer.POAHelper.narrow(obj);

In principle, this corresponds to a Java downcast such as

org.omg.PortableServer.POA rootPOA =
 (org.omg.PortableServer.POA)obj;

This, however, would be an improper approach because on the Java level nothing is known
about the IDL inheritance hierarchy so that a type-check whether this downcast is admissible
could not be carried out here.

In addition to the just described “bootstrap” operations, we introduced two conversion opera-
tions in Section 6.2.3, object_to_string() and string_to_object(), which
may be invoked to transform an object reference (IOR) into a string and vice versa for stor-
age or transmission purposes.

 6.3 Portable Object Adapter 97

The Java representations of these operations are

public abstract String object_to_string(
 org.omg.CORBA.Object obj);

and

public abstract org.omg.CORBA.Object string_to_object(
 String str);

It is guaranteed that an IOR converted into its string representation via an invocation of ob-
ject_to_string() can be regained by a subsequent string_to_object() invoca-
tion and still references the same object, irrespective of whether the operations were carried
out through different ORBs. However, it should be observed that the return type of
string_to_object() is the generic type CORBA::Object (and, therefore, on the
Java level, the type org.omg.CORBA.Object) so that the resulting object reference has
to be converted to the expected object type through an invocation of the narrow() method
of the appropriate helper class (see Section 5.5).

In Section 6.2.4, we introduced several thread-related operations. These operations were a-
dopted after standardization of the first version of the IDL to Java Language mapping. For
reasons of binary compatibility, they were not mapped to abstract methods as usual but in-
stead to concrete methods that may throw a single Java run-time exception of type
org.omg.CORBA.NO_IMPLEMENT. As is the case with abstract methods, vendors of
ORB products have to override these methods by suitable implementations in the subclasses
they provide. The Java declarations of these operations are simply as follows:

public boolean work_pending() {
 throw new org.omg.CORBA.NO_IMPLEMENT();
}
public void perform_work() {
 throw new org.omg.CORBA.NO_IMPLEMENT();
}
public void run() {
 throw new org.omg.CORBA.NO_IMPLEMENT();
}
public void shutdown(boolean wait_for_completion) {
 throw new org.omg.CORBA.NO_IMPLEMENT();
}
public void destroy() {
 throw new org.omg.CORBA.NO_IMPLEMENT();
}

6.3 Portable Object Adapter

The Portable Object Adapter is OMG’s standard object adapter. As already described in Sec-
tion 3.4.2, an object adapter is the link between the ORB and the proper object implementa-
tions. The OMG followed several objectives when specifying the POA. To the greatest pos-
sible extent, the specification should cover all application areas; moreover, the typical OMG
criteria, portability, scalability, and flexibility, had to be met. The interfaces provided by the

98 6 Important Elements of the ORB Runtime

POA can be classified into several categories according to their functionality. There are inter-
faces with operations managing association of object references with servants that implement
the business logic defined by an IDL interface. The second category of operations concerns
transparent activation of CORBA objects. Operations for setting specific strategies (policies)
when associating CORBA objects with servants form the third category and allow concurrent
support of CORBA objects with different properties.

The association of a CORBA object with a servant is called incarnation. Transferring a
CORBA object into a state where it can process client requests is called activation. Incarna-
tion of an object is thus a necessary condition for its activation.

6.3.1 POA Policies

The standard supports numerous different policies that are specified when a POA is created
and that govern its behavior.

Thread Policy
The POA supports three different threading models: the ORB-Controlled Model,
where the ORB is responsible for assigning requests (ORB_CTRL_MODEL); the Sin-
gle Thread Model, where requests are processed sequentially (SINGLE_THREAD_
MODEL); and the Main Thread Model, where the POA only uses the main thread to
process requests sequentially (MAIN_THREAD_MODEL).

Lifespan Policy
The lifespan of the objects managed by the POA can be specified either TRANSIENT
or PERSISTENT. Transient objects cannot outlive the POA instance in which they
were created. Requests received afterwards cause an OBJECT_NOT_EXIST excep-
tion to be thrown. This restriction is abolished for persistent objects.

ID Assignment Policy
The assignment of IDs to objects can be carried out automatically by the POA (SYS-
TEM_ID) or by the application (USER_ID).

ID Uniqueness Policy
This policy determines whether servants can support one single object ID (UNIQUE_
ID) or one or more IDs (MULTIPLE_ID).

Servant Retention Policy
With this policy, it is specified whether the POA stores a mapping of object IDs and
servants in an Active Object Map (RETAIN) or not (NON_RETAIN). The decision
has several consequences concerning the usage of the request processing models dis-
cussed below. The RETAIN strategy may be combined with the USE_ACTIVE_
MAP_ONLY strategy, the USE_DEFAULT_SERVANT strategy, or the USE_SERV-
ANT_MANAGER strategy; whereas, due to the missing Active Object Map, the NON_
RETAIN strategy can only be combined with the remaining two request processing
models.

Request Processing Policy
This policy determines in which way client requests are passed to the respective ser-
vants. Three cases are distinguishable. First, it is possible to dispatch requests exclu-
sively via the Active Object Map (USE_ACTIVE_MAP_ONLY). The second possibil-
ity is to process the request by a default servant (USE_DEFAULT_SERVANT). A de-

6.3 Portable Object Adapter 99

fault servant accepts all requests that do not concern objects in the Active Object Map
(if existent). The last alternative is the utilization of a servant manager (USE_SERV-
ANT_MANAGER). Instances of that type are objects that adopt the task of managing
servants. According to their functionality, two different subtypes may be distin-
guished: servant activator and servant locator. Servant activators are used by POA
instances created with the RETAIN policy. Their task is to carry out incarnation of
servants for use in later requests. Servant locators are used by POA instances created
with the NON_RETAIN policy. They provide servants that may be used for process-
ing of one single request.

Implicit Activation Policy
When the server application attempts to obtain a reference for a servant that is not al-
ready active (that is, not associated with an object ID), the POA may implicitly acti-
vate an object (IMPLICIT_ACTIVATION policy). Implicit activation requires that
the POA is configured with servant retention policy RETAIN and assignment policy
SYSTEM_ID. If the NO_IMPLICIT_ACTIVATION policy is chosen, the POA does
not support implicit activation of servants.

Any server application must generate at least one POA instance, the root POA. The root
POA is a pre-defined object adapter configured as shown below.

Thread Policy: ORB_CTRL_MODEL

Lifespan Policy: TRANSIENT

ID Assignment Policy: SYSTEM_ID

ID Uniqueness Policy: UNIQUE_ID

Servant Retention Policy: RETAIN

Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY

Implicit Activation Policy: IMPLICIT_ACTIVATION

Furthermore, a server application can generate and utilize additional, differently configured
POA instances as direct or indirect child POAs inherited from the root POA.

6.3.2 Overview on POA Functionality
The locality-constrained interface of the POA is defined in the module PortableServer:

module PortableServer
{
 local interface POA
 {
 ...
 };
 ...
};

As noted above, the operations provided by the POA specification may be classified into dif-
ferent categories according to their functionality. The first kind is related to the POA itself
and comprises two operations.

100 6 Important Elements of the ORB Runtime

void POA create_POA(in string adapter_name,
 in POAManager a_POAManager,
 in CORBA::PolicyList policies)
 raises(AdapterAlreadyExists, InvalidPolicy);

This operation creates a new POA instance. The new POA is generated as a child of
the target POA on which the operation is invoked. The specified adapter_name
identifies the new POA with respect to other POAs with the same parent. If the parent
POA already has a child with that name, an exception of type AdapterAlready-
Exists is raised. If the value of the POAManager argument is null, a new POA-
Manager instance is created and associated with the new POA.

void POA find_POA(in string adapter_name,
 in boolean activate_it)
 raises(AdapterNonExistent);

This operation may be invoked to find a specific instance of a child POA. If the target
POA has a child with the specified name, that child is returned. If a child with the
specified name does not exist and the value of the boolean argument is TRUE, acti-
vation of the child POA is attempted. If successful, that child is returned; otherwise,
the exception is raised.

The second class of functionality deals with generating object references. The POA specifi-
cation provides two operations for that purpose.

Object create_reference(in CORBA::RepositoryId intf)
 raises(WrongPolicy);

In order to invoke this operation successfully, the target POA instance must have
been configured with the ID assignment policy SYSTEM_ID; otherwise, the Wrong-
Policy exception is raised. The specified repository ID determines the type of the
generated object reference.

Object create_reference_with_id(in ObjectId oid,
 in CORBA::RepositoryId intf)
 raises(WrongPolicy);

This operation generates an object reference with the specified object ID and type. If
it is invoked on a POA instance that was configured with the SYSTEM_ID policy and
the passed object ID value was not generated by the system or this POA, a Wrong-
Policy exception is raised.

The next category concerns the detection and specification of servant manager objects. Two
operations are provided for this.

ServantManager get_servant_manager()
 raises(WrongPolicy);

6.3 Portable Object Adapter 101

In order to invoke this operation properly, the target POA instance must have been
configured with the USE_SERVANT_MANAGER policy; otherwise, a Wrong-
Policy exception is raised. The invocation returns a reference to the Servant-
Manager object associated with the POA. If no servant manager has been associated
with the POA, a null reference is returned.

void set_servant_manager(in ServantManager imgr)
 raises(WrongPolicy);

This is the counterpart of the above get operation. Again, the USE_SERVANT_MA-
NAGER policy is required. The invocation sets the default servant manager associated
with the POA. It may only be invoked once after the POA was created; otherwise, a
system exception is raised.

The fourth type of operations deals with getting and setting servant objects. Two operations
are available.

Servant get_servant()
 raises(NoServant, WrongPolicy);

This operation requires that the target POA instance is configured with the request
processing policy USE_DEFAULT_SERVANT; if not, a WrongPolicy exception is
raised. The invocation returns a reference to the default servant object. If no servant
has been associated with the POA, an exception of type NoServant is raised.

void set_servant(in Servant p_servant)
 raises(WrongPolicy);

This is the counterpart of the above get operation. The USE_DEFAULT_SERVANT
policy is also required. The operation registers the specified servant as the target’s de-
fault servant.

The fifth function category comprises activation, deactivation, and destruction of CORBA
objects. Four operations are available.

ObjectId activate_object(in Servant p_servant)
 raises(ServantAlreadyActive, WrongPolicy);

Proper invocation of this operation requires that the target POA instance is configured
with the SYSTEM_ID and RETAIN policies. Otherwise, a WrongPolicy exception
is raised. If the POA uses the UNIQUE_ID policy and the servant specified as argu-
ment is already in the Active Object Map, a ServantAlreadyActive exception
is raised. Otherwise, the operation generates an object ID, enters it together with the
specified servant in the Active Object Map, and returns the object ID.

102 6 Important Elements of the ORB Runtime

void activate_object_with_id(in ObjectId oid,
 in Servant p_servant)
 raises(ObjectAlreadyActive, ServantAlreadyActive,
 WrongPolicy);

This operation requires that the target POA instance is configured with the RETAIN
policy. Otherwise, a WrongPolicy exception is raised. In the conditions stated
above, a ServantAlreadyActive exception is raised. If the object denoted by
the oid is already active, an ObjectAlreadyActive exception is raised. Other-
wise, the invocation enters the corresponding entry in the Active Object Map.

void deactivate_object(in ObjectId oid)
 raises(ObjectNotActive, WrongPolicy);

The target POA instance must be configured with the RETAIN policy; otherwise, a
WrongPolicy exception is raised. The invocation causes the object ID passed as
oid value to be deactivated and removed from the Active Object Map of this POA.
Before the ID is removed from the Active Object Map, all active requests to the cor-
responding object are completed. After the operation has returned, no further requests
to the object are accepted.

void destroy(in boolean etherealize_objects,
 in boolean wait_for_completion);

This operation destroys the POA instance for which it is invoked. All child POAs, as
well as their descendants, are also destroyed. The name of the destroyed POA may be
reused in the same process to create a new POA. The technical details of the destruc-
tion process of a POA can be found in the CORBA specification [OMG04c].

In a further category of operations, we find various conversion routines.

ObjectId servant_to_id(in Servant p_servant)
 raises(ServantNotActive, WrongPolicy);

With this operation, the object ID of the specified servant, if active, is determined and
returned.

Servant id_to_servant(in ObjectId oid)
 raises(ObjectNotActive, WrongPolicy);

The counterpart of the preceding operation, the servant associated to the object ID in
the Active Object Map, is returned.

Object servant_to_reference(in Servant p_servant)
 raises(ServantNotActive, WrongPolicy);

6.3 Portable Object Adapter 103

If the specified servant is active, the invocation determines and returns the servant’s
object reference.

Servant reference_to_servant(in Object reference)
 raises(ObjectNotActive, WrongAdapter, WrongPolicy);

The counterpart of the preceding operation; if the specified object is present in the
Active Object Map, the servant associated with that object is returned.

Object id_to_reference(in ObjectId oid)
 raises(ObjectNotActive, WrongPolicy);

If an object with the specified ID is currently active, this operation returns the ob-
ject’s reference.

ObjectId reference_to_id(in Object reference)
 raises(WrongAdapter, WrongPolicy);

The counterpart of the preceding operation, the object ID corresponding to the speci-
fied object reference is returned.

All the above operations require certain policy settings for the target POA in order to com-
plete their invocation without raising an exception such as, e.g., WrongPolicy. The num-
ber of possible configurations is so extensive that we do not go into details here. However,
we come back to the operations and their requirements during discussion of the examples in
the following chapters.

The last category of POA functionality concerns policy creation operations. These operations
return a policy object with the specified value.

ThreadPolicy create_thread_policy(
 in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
 in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
 in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
 in IdAssignmentPolicyValue value);

ImplicitActivationPolicy
 create_implicit_activation_policy(
 in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(
 in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy(
 in RequestProcessingPolicyValue value);

104 6 Important Elements of the ORB Runtime

In the POA interface, a number of readonly attributes are defined that allow us to deter-
mine some of the current state values. For example:

readonly attribute CORBA::OctetSeq id;
This attribute stores the POA’s unique ID.

readonly attribute string the_name;
This attribute stores the name assigned to the POA when it was created.

readonly attribute POA the_parent;
This attribute identifies the parent of the POA. The parent of the root POA is null.

readonly attribute POAList the_children;
This attribute identifies the set of all direct child POAs of the POA.

readonly attribute POAManager the_POAManager;
This attribute identifies the POAManager instance associated with the POA.

readonly attribute POAManagerFactory
 the_POAManagerFactory;
This attribute identifies the POAManagerFactory that created the POA.

In the following, we briefly discuss a number of interfaces from the POA specification; some
of which were already mentioned above.

6.3.3 POA Manager
Each POA object has an associated POA manager. The task of this POAManager object is
to encapsulate the state of the POAs with which it is associated. A POA manager may be as-
sociated with one or more POAs. It can assume four different states: active, inactive, hold-
ing, or discarding. In Figure 9 below, the state diagram for the processing states of a
POAManager is shown.

The POAManager interface contains the following operations:

void activate() raises(AdapterInactive);
This operation changes the state of the POA manager to active. In that state, the
POAs it manages are enabled to process requests. The AdapterInactive is
raised if the operation is invoked while the manager is in the inactive state. All the
operations below that define a raises(AdapterInactive) clause behave in
that way (see the above state diagram).

void hold_requests(in boolean wait_for_completion)
 raises(AdapterInactive);
This operation may be invoked to change the POA manager’s state to holding. Enter-
ing the holding state causes the managed POAs to queue incoming requests. If the
value of the wait_for_completion argument is FALSE, the operation returns
immediately after changing the state.

6.3 Portable Object Adapter 105

void discard_requests(in boolean wait_for_completion)
 raises(AdapterInactive);
This operation changes the state of the POA manager to discarding. As a consequen-
ce, the POAs it manages are caused to discard incoming requests. In addition, any re-
quests that have been queued but have not started executing are also discarded. The
value provided for wait_for_completion has the same consequence as above.

void deactivate(in boolean etherealize_objects,
 in boolean wait_for_completion)
 raises(AdapterInactive);
This operation changes the state of the POA manager to inactive. In that state, the
POAs it manages reject requests that have not begun to be executed as well as any
new requests. If etherealize_objects is TRUE, the associated POAs call
etherealize for each active object associated with the POA once all currently execut-
ing requests have completed processing (if the POAs have the RETAIN and
USE_SERVANT_MANAGER policies). Any queued requests are rejected and the
POA gets rid of its registered servant manager object, if any. If the value is FALSE,
no deactivations or etherealizations are attempted.

State get_state();
This operation returns the current state of the POA manager. State is an enumer-
ated type (enum) with the enumerators HOLDING, ACTIVE, DISCARDING, and
INACTIVE.

string get_id();
This operation returns the POAManager’s identity. If it is invoked for POA manager
of the root POA, the result "RootPOAManager" is returned.

destroy

create_POA

holding

active

inactive

activate hold_requests

deactivate

deactivate discarding

hold_requests

activate

discard_requests

discard_requests

deactivate

Figure 9: Processing States of a POAManager

106 6 Important Elements of the ORB Runtime

POAManager instances may be created in two ways:

implicitly, by invoking the operation create_POA()(as already discussed in Sec-
tion 6.3.2, the POAManager parameter must be passed a null value) or

explicitly, by using a POAManagerFactory object (this approach is not discussed
here).

As previously mentioned, when the POA receives a request targeted at an inactive object, it
employs a ServantManager object to activate the servants. The servant manager interface
is itself empty:

local interface ServantManager{ };

It is inherited by two other interfaces, the ServantActivator and the ServantLoca-
tor.

6.3.4 Servant Activators
A POA configured with the RETAIN policy uses servant managers that are ServantAc-
tivators in order to activate servants permanently. The activated servants are placed in the
Active Object Map. The servant activator interface has the following definition:

local interface ServantActivator : ServantManager
{
 Servant incarnate(in ObjectId oid, in POA adapter)
 raises(ForwardRequest);
 void etherealize(in ObjectId oid, in POA adapter,
 in Servant serv, in boolean cleanup_in_progress,
 in boolean remaining_activations);
};

The operation incarnate() is invoked by a POA (configured with the RETAIN and
USE_SERVANT_MANAGER policies) whenever the POA receives a request for a servant that
is not in the Active Object Map. Operation etherealize() provides the complementary
functionality and is invoked by the POA whenever a servant is deactivated.

6.3.5 Servant Locators
ServantLocators are used by POA instances that employ the NON_RETAIN policy.
Servants returned by this servant manager are only used for processing a single client re-
quest. The servant locator interface has the following definition:

local interface ServantLocator : ServantManager
{
 native Cookie;
 Servant preinvoke(in ObjectId oid, in POA adapter,
 in CORBA::Identifier operation, out Cookie the_cookie)
 raises(ForwardRequest);
 void postinvoke(in ObjectId oid, in POA adapter,
 in CORBA::Identifier operation, in Cookie the_cookie,

 6.3 Portable Object Adapter 107

 in Servant the_servant);
};

The operation preinvoke() is invoked by a POA (configured with the NON_RETAIN and
USE_SERVANT_MANAGER policies) whenever the POA receives a request for an object not
currently active. The invocation returns a servant used to process the incoming request as
well as a cookie (see the out parameter in the definition), which might be used in the corre-
sponding postinvoke() invocation. The postinvoke() operation is invoked when
the servant has completed the request.

6.3.6 Java Mapping of Interface POA

The POA interface is defined on the basis of regular IDL within the module Portable-
Server. In accordance with the standard IDL to Java rules, it is mapped in the following
way:

package org.omg.PortableServer;

public interface POA {
 ...
};

The first POA-related operation we introduced in Section 6.3.1 was create_POA(). It is
invoked to generate new child POAs following policies other than the standard root POA.
The resulting Java method is

public org.omg.PortableServer.POA create_POA(
 java.lang.String adapter_name,
 org.omg.PortableServer.POAManager a_POAManager,
 org.omg.CORBA.Policy[] policies) throws
 org.omg.PortableServer.POAPackage.AdapterAlreadyExists,
 org.omg.PortableServer.POAPackage.InvalidPolicy;

Examples for generating child POAs and configuring the desired policies are given in Chap-
ter 16. In the context of operation create_POA(), we also discussed find_POA(),
which finds existing POA instances. This operation is mapped to the Java method below:

public org.omg.PortableServer.POA find_POA(
 java.lang.String adapter_name,
 boolean activate_it) throws
 org.omg.PortableServer.POAPackage.AdapterNonExistent;

Generating new object references belongs to the primary tasks of a POA. To that end, the
POA interface provides the operations create_reference() and create_referen-
ce_with_id(), introduced in Section 6.3.1. The corresponding Java methods are

public org.omg.CORBA.Object create_reference(
 java.lang.String intf) throws
 org.omg.PortableServer.POAPackage.WrongPolicy;

and

108 6 Important Elements of the ORB Runtime

public org.omg.CORBA.Object create_reference_with_id(
 byte[] oid, java.lang.String intf) throws
 org.omg.PortableServer.POAPackage.WrongPolicy;

In both cases, the type of the object reference to be generated is determined by a Repo-
sitoryId, which is passed as a String argument. The newly generated object references,
however, are not yet associated with a servant; they are not activated. So far, only the “ab-
stract” object and its reference exist, which can, for example, already be converted into its
string representation or registered with the Naming Service.

For setting or getting references to ServantManager objects, we introduced the opera-
tions set_servant_manager() and get_servant_manager(). In Java they are
represented by the methods

public void set_servant_manager(
 org.omg.PortableServer.ServantManager imgr) throws
 org.omg.PortableServer.POAPackage.WrongPolicy;

and

public org.omg.PortableServer.ServantManager
 get_servant_manager() throws
 org.omg.PortableServer.POAPackage.WrongPolicy;

Setting and getting references to Servant objects with the operations set_servant()
and get_servant() follows the same pattern. In Java, the corresponding methods are

public void set_servant(
 org.omg.PortableServer.Servant p_servant) throws
 org.omg.PortableServer.POAPackage.WrongPolicy;

and

public org.omg.PortableServer.Servant get_servant() throws
 org.omg.PortableServer.POAPackage.NoServant,
 org.omg.PortableServer.POAPackage.WrongPolicy;

The fifth category of functionality provides means for activation, deactivation, and destruc-
tion of CORBA objects with the help of operations activate_object(), activate_
object_with_id(), deactivate_object(), and destroy(). Their Java counter-
parts are

public byte[] activate_object(
 org.omg.PortableServer.Servant p_servant) throws
 org.omg.PortableServer.POAPackage.ServantAlreadyActive,
 org.omg.PortableServer.POAPackage.WrongPolicy;

public void activate_object_with_id(byte[] id,
 org.omg.PortableServer.Servant p_servant) throws
 org.omg.PortableServer.POAPackage.ServantAlreadyActive,
 org.omg.PortableServer.POAPackage.ObjectAlreadyActive,
 org.omg.PortableServer.POAPackage.WrongPolicy;

 6.3 Portable Object Adapter 109

public void deactivate_object(byte[] oid) throws
 org.omg.PortableServer.POAPackage.ObjectNotActive,
 org.omg.PortableServer.POAPackage.WrongPolicy;

void destroy(boolean etherealize_objects,
 boolean wait_for_completion);

We further discussed the POA’s conversion routines provided by the operations servant_
to_id(), servant_to_reference(), id_to_servant(), id_to_referen-
ce(), reference_to_servant(), and reference_to_id(). They are mapped to
the following Java methods:

public byte[] servant_to_id(
 org.omg.PortableServer.Servant p_servant) throws
 org.omg.PortableServer.POAPackage.ServantNotActive,
 org.omg.PortableServer.POAPackage.WrongPolicy;

public org.omg.CORBA.Object servant_to_reference(
 org.omg.PortableServer.Servant p_servant) throws
 org.omg.PortableServer.POAPackage.ServantNotActive,
 org.omg.PortableServer.POAPackage.WrongPolicy;

public org.omg.PortableServer.Servant id_to_servant(
 byte[] oid) throws
 org.omg.PortableServer.POAPackage.ObjectNotActive,
 org.omg.PortableServer.POAPackage.WrongPolicy;

public org.omg.CORBA.Object id_to_reference(
 byte[] oid) throws
 org.omg.PortableServer.POAPackage.ObjectNotActive,
 org.omg.PortableServer.POAPackage.WrongPolicy;

public org.omg.PortableServer.Servant
 reference_to_servant(org.omg.CORBA.Object reference)
 throws
 org.omg.PortableServer.POAPackage.ObjectNotActive,
 org.omg.PortableServer.POAPackage.WrongPolicy;

public byte[] reference_to_id(
 org.omg.CORBA.Object reference) throws
 org.omg.PortableServer.POAPackage.WrongAdapter,
 org.omg.PortableServer.POAPackage.WrongPolicy;

In the last category of POA functionality, we dealt with operations generating policy infor-
mation. These operations, namely, create_thread_policy(), create_lifespan_
policy(), create_id_uniqueness_policy(), create_id_assignment_
policy(), create_implicit_activation_policy(), create_servant_
retention_policy(), and create_request_processing_policy(), have the
following Java mappings:

public org.omg.PortableServer.ThreadPolicy
 create_thread_policy(
 org.omg.PortableServer.ThreadPolicyValue value);

110 6 Important Elements of the ORB Runtime

public org.omg.PortableServer.LifespanPolicy
 create_lifespan_policy(
 org.omg.PortableServer.LifespanPolicyValue value);

public org.omg.PortableServer.IdUniquenessPolicy
 create_id_uniqueness_policy(
 org.omg.PortableServer.IdUniquenessPolicyValue value);

public org.omg.PortableServer.IdAssignmentPolicy
 create_id_assignment_policy(
 org.omg.PortableServer.IdAssignmentPolicyValue value);

public org.omg.PortableServer.ImplicitActivationPolicy
 create_implicit_activation_policy(
 org.omg.PortableServer.ImplicitActivationPolicyValue
 value);

public org.omg.PortableServer.ServantRetentionPolicy
 create_servant_retention_policy(
 org.omg.PortableServer.ServantRetentionPolicyValue
 value);

public org.omg.PortableServer.RequestProcessingPolicy
 create_request_processing_policy(
 org.omg.PortableServer.RequestProcessingPolicyValue
 value);

Finally, according to the familiar rules, the readonly attributes defined in the POA inter-
face are mapped to these get methods:

public byte[] id();

public java.lang.String the_name();

public org.omg.PortableServer.POA the_parent();

public org.omg.PortableServer.POA[] the_children();

public org.omg.PortableServer.POAManager the_POAManager();

6.4 Pseudo Interface CORBA::Object

The pseudo interface CORBA::Object serves as superinterface for all IDL interfaces de-
fined with the intention of later implementing them through servants. Thus, all of its opera-
tions are available to all CORBA objects that application programmers develop.

6.4.1 IDL Operations of CORBA::Object

The interface CORBA::Object provides, amongst others, the following fundamental op-
erations (note that discussion of operations pertaining to the DII are covered in Section
6.6.5).

6.4 Pseudo Interface CORBA::Object 111

Object duplicate();
This operation creates a copy of an object. The invocation returns an object reference
to the newly generated duplicate.

void release();
When an object reference is no longer needed, its storage may be reclaimed by use of
the operation release(). Operations duplicate() as well as release() play
an important role for programming languages where programmers themselves are re-
sponsible for storage management and garbage collection like, for example, C or
C++.

boolean is_nil();
With this operation, we can test whether an object’s reference has the null value
(more precisely: OBJECT_NIL) and, therefore, denotes no object. In that case, the
invocation returns the result TRUE. Should the result be FALSE, one should never-
theless be cautious about presuming that the reference is valid since in the meantime
(the return of the operation and the testing of its value) the object may have been de-
stroyed.

boolean non_existent();
This operation may be used to test whether an object has been destroyed. It returns
TRUE if the ORB knows that the object does not exist; otherwise, it returns FALSE.
The latter result should, again, be interpreted with caution.

boolean is_a(in RepositoryID logical_type_id);
Operation is_a() tests whether an object is of a certain type. The string argument
logical_type_id denotes the type to which it is to be compared; it is one of the
types stored in the Interface Repository. If the invocation returns the result TRUE, the
object is an instance of that type or of a subtype of that type. Should the result be
FALSE, the types are not compatible. If the ORB cannot perform the test, e.g., it can-
not contact a remote ORB or Interface Repository due to network problems, an ex-
ception in the calling application is raised.

boolean is_equivalent(in Object other_object);
This operation tests if two object references are equivalent. Two references are
equivalent if they are identical. Two different object references referring to the same
object are also equivalent. A return value of FALSE indicates that the references are
not identical and that the ORB cannot determine whether they refer to the same object
or not.

The CORBA standard specifies a number of additional interfaces and structures relevant for
usage of the DII (in particular CORBA::NamedValue or CORBA::NVList), the DynAny
interface, or the Interface Repository. These are discussed in subsequent chapters.

6.4.2 Java Mapping of Pseudo Interface CORBA::Object

CORBA::Object is the superinterface for all CORBA objects defined with the help of
IDL. It provides the operations available to any CORBA object. They are implemented by the
ORB local to the client of the service-providing object, often a remote object. In Java, the
pseudo interface CORBA::Object is mapped in the following way:

112 6 Important Elements of the ORB Runtime

package org.omg.CORBA;

public interface Object {
 ...
};

The two first operations duplicate() and release() from CORBA::Object, which
were mentioned in Section 6.4.1, copy or release storage of CORBA objects. Although there
is no necessity to invoke those methods in Java applications since the language provides
automatic storage management for object references, they are provided for the sake of com-
pleteness. Note the underscores that had to be appended to the original IDL identifiers

org.omg.CORBA.Object _duplicate();

and

void _release();

With the operation is_nil(), one can test if an object reference is actually referencing an
object or not. In the latter case, the reference has the value OBJECT_NIL and the operation
returns the boolean value TRUE. Java uses the null value to indicate that a reference does
not reference an object. For that reason, no Java mapping for the operation is_nil() is
provided. The simple expression obj_ref == null yields the desired result without any
method invocation. A corresponding Java code snippet could therefore read

if (obj_ref != null)
 obj_ref.op_x();
else
 ...

The operation non_existent(), which allows testing if a CORBA object has been de-
stroyed, has the Java counterpart

boolean _non_existent();

The invocation might require the ORB to contact a remote server. Therefore, the application
might throw an exception. The same holds for the operation is_a(), which tests if the ob-
ject’s type is compatible with the interface type specified in the argument. In Java, that op-
eration is mapped to

boolean _is_a(String intf);

To compare two object references for equivalence, operation is_equivalent() may be
invoked. In Java, the corresponding method is

boolean _is_equivalent(org.omg.CORBA.Object other_object);

Here, a false return value only indicates that the ORB does not know whether the refer-
enced objects are identical or not.

6.5 Pseudo Interface CORBA::TypeCode 113

6.5 Pseudo Interface CORBA::TypeCode

The pseudo interface CORBA::TypeCode makes it possible to represent type information
on arbitrary IDL types. TypeCode instances are mainly needed in order to

represent the data type and interface type specifications registered in an Interface Re-
pository,

determine the types of the actual arguments and the return type when compiling a dy-
namic operation invocation, or

provide the value stored in an any with a type so that type safety is ensured during
extraction of this value.

TypeCode instances are generated by invoking one of several similarly organized opera-
tions in the CORBA::ORB interface. The central type information stored in a TypeCode in-
stance can be determined through an invocation of operation kind(), which returns a
CORBA::TCKind instance as a result. TCKind is an enumerated type that defines enu-
merators for all kinds of TypeCodes. The set of admissible operation invocations for the
object represented by the TypeCode is dependent on that code. The IDL definition for
CORBA::TCKind is given below:

enum TCKind
{
 tk_null, tk_void, tk_short, tk_long,
 tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean,
 tk_char, tk_octet, tk_any, tk_TypeCode, tk_Principal,
 tk_objref, tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array, tk_alias, tk_except, tk_longlong,
 tk_ulonglong, tk_longdouble, tk_wchar, tk_wstring,
 tk_fixed, tk_value, tk_value_box, tk_native,
 tk_abstract_interface, tk_local_interface, tk_component,
 tk_home, tk_event
};

In Java, the pseudo interface CORBA::TypeCode is represented by the public abstract
class TypeCode in package org.omg.CORBA. The enumerated type CORBA::TCKind
is mapped according to the rules discussed in Section 5.10 with the exception that no helper
or holder classes are generated since that type is never used as argument of a remote opera-
tion invocation. Here, it should be sufficient to present only part of the Java implementation:

package org.omg.CORBA;

public class TCKind {
 public static final int _tk_null = 0;
 public static final TCKind tk_null =
 new TCKind(_tk_null);
 public static final int _tk_void = 1;
 TCKind tk_void = new TCKind(_tk_void);
 public static final int _tk_short = 2;
 ...
}

114 6 Important Elements of the ORB Runtime

We chose not to describe in detail the specifics connected with TypeCodes and refer inter-
ested readers to the examples addressed in later chapters as well as to the CORBA specifica-
tion and the IDL to Java Mapping documentation, where the complete definitions of the in-
volved interfaces may be found.

6.6 Dynamic Invocation Interface

In Section 3.4.5, we explained the basics of the Dynamic Invocation Interfaces, which may
be employed at run-time to execute remote operation invocations without resorting to the
stub classes generated by an IDL compiler. The labeling DII is somewhat misleading since
the DII is not a single, self-contained interface; rather, it is just a generic term for an aggrega-
tion of functional building stones, consisting of a number of specialized pseudo interfaces as
well as several operations that are included in the already known pseudo interfaces
CORBA::ORB and CORBA::Object. Before we go into these operations, we first describe
the dedicated pseudo interfaces NamedValue and NVList, which, for their part, are used
as types in these operations.

While working on this book, we came across a number of inconsistencies and errors in the
CORBA specification 3.0.3 [OMG04c] we used pertaining to the DII’s IDL to Java mapping
[OMG02]. Obviously, during editing the revised version of the CORBA specification, the
sections concerning the above pseudo objects were completely neglected with respect to up-
dating and error correction. As an example, we could select the version of the pseudo inter-
face NVList given in the specification. In the version presented there, this interface is rather
useless since no operations are defined that are able to extract elements from the list once
they were inserted. In the mapping document, however, a completely different but practical
definition of NVLists is intended. We encountered similar problems in other parts of the
specification and, therefore, recommend regarding the Java mapping document as a relevant
reference in the context of specifying pseudo objects. Especially in view of practicability and
runnability of example code, it can serve as a concrete basis for implementation of Java
ORBs. Consequently, the PIDL particulars in the subsections below follow the definitions in
the Java mapping document and not the CORBA specification. It can be expected that future
versions of the CORBA standard resolve these inadequacies and, thus, set the record straight
for application developers, ORB implementers, and programmers generally interested in
middleware or CORBA technology.

6.6.1 Pseudo Interface CORBA::NamedValue

NamedValues are employed to describe the arguments and results of a dynamic operation
invocation. Whereas in the actual CORBA specification and in previous specifications
NamedValues are still defined as a struct data type, in the Java mapping document, they
are specified through a PIDL pseudo interface CORBA::NamedValue. Its definition is

typedef unsigned long Flags;
typedef string Identifier;
const Flags ARG_IN = 1;
const Flags ARG_OUT = 2;
const Flags ARG_INOUT = 3;

 6.6 Dynamic Invocation Interface 115

const Flags CTX_RESTRICT_SCOPE = 15;

pseudo interface NamedValue
{
 readonly attribute Identifier name;
 readonly attribute any value;
 readonly attribute Flags flags;
};

The name attribute defines the name of a parameter needed for a dynamic operation invoca-
tion. The attribute value is used to store the corresponding argument value for that parame-
ter. It also contains information on the concrete parameter type that is encapsulated here in
the type any. The attribute flags of type Flags governs the direction in which the value
is passed (note that this naming schema would be illegal in regular IDL). In accordance with
the IDL keywords in, out, and inout, which may be used for static invocations, the fol-
lowing values are admissible:

CORBA::ARG_IN
This constant specifies that the argument be passed from client to server.

CORBA::ARG_OUT
This constant specifies that the argument be passed from server to client.

CORBA::ARG_INOUT
This constant specifies that the argument be passed in both directions.

Since on the IDL level neither the CORBA specification nor the Java mapping defines an
operation to generate NamedValue instances, this had to be made up for on the program-
ming language level. We introduce the corresponding Java method for that task in Section
6.6.6.

6.6.2 Pseudo Interface CORBA::NVList

The pseudo interface CORBA::NVList facilitates passing a number of arguments, which
can be managed in a list of NamedValues. The Java mapping provides the following PIDL
specification:

pseudo interface NVList
{
 readonly attribute unsigned long count;
 NamedValue add(in Flags flags);
 NamedValue add_item(in Identifier item_name,
 in Flags flags);
 NamedValue add_value(in Identifier item_name,
 in any val, in Flags flags);
 NamedValue item(in unsigned long index)
 raises(CORBA::Bounds);
 void remove(in unsigned long index)
 raises(CORBA::Bounds);
};

116 6 Important Elements of the ORB Runtime

Three add...() operations are defined that insert new elements into an NVList instance.
Note that, interestingly, the functionality of these operations goes beyond mere “add” seman-
tics since they serve as constructors for NamedValue objects as well. It is important to be
aware that no add...() operation is defined that can insert existing NamedValue objects
and to this end provides an in parameter of type NamedValue.

All three variants first generate a new NamedValue object based on differing initialization
arguments. This object is then automatically inserted into the NVList object that was the
target of the invocation. The new NamedValue object is returned as a result of the invoca-
tion, as well. Normally, the last two variants are employed. In order to invoke operation
add_value(), all relevant initialization information to generate the NamedValue must
be given: parameter name, parameter value, and directional attribute. The operation
add_item(), however, does without the possibility to provide a value, which predestines
it to usage with parameters of type CORBA::ARG_OUT, which do not need an initializer
value.

The pseudo interface NVList further specifies the two operations item() and remove()
as well as an attribute count. Operation item() may be invoked to return a reference to
the NamedValue object positioned at the given index in the list. With an invocation of op-
eration remove(), the object at the specified position is removed from the list; one can see
that NVLists are modifiable. At any time, the readonly attribute count stores the cur-
rent number of entries in the list.

Instances of a CORBA::NVList can only be generated by the ORB operations create_
list() and create_operation_list() (see Section 6.6.4).

6.6.3 Pseudo Interface CORBA::Request

Request objects that can be generated by the ORB are needed in connection with dynamic
operation invocations on objects where the IDL type is not known at compile-time of the ap-
plication (see the interface Object and the operation create_request() in Section
6.6.5). A Request object contains all the information necessary for a dynamic invocation,
namely, an object reference, an operation name, type information, and values for arguments.
Thus, the client can send a request to an object analogous to the static approach that uses stub
code. The pseudo interface Request provides the necessary operations to initialize and
execute such an invocation:

pseudo interface Request
{
 readonly attribute Object target;
 readonly attribute Identifier operation;
 readonly attribute NVList arguments;
 readonly attribute NamedValue result;
 readonly attribute Environment env;
 readonly attribute ExceptionList exceptions;
 readonly attribute ContextList contexts;
 attribute Context ctx;
 any add_in_arg();
 any add_named_in_arg(in string name);
 any add_inout_arg();

 6.6 Dynamic Invocation Interface 117

 any add_named_inout_arg(in string name);
 any add_out_arg();
 any add_named_out_arg(in string name);
 void set_return_type(in TypeCode tc);
 any return_value();
 void invoke();
 void send_oneway();
 void send_deferred();
 void get_response();
 boolean poll_response();
};

The Request object is generated by invoking the Object operation create_re-
quest(). During its generation, values are provided for the attributes in the interface defi-
nition. The attribute target contains the reference to the object that has to execute the in-
vocation. The attributes operation, arguments, and result contain the operation’s
name, its arguments, the return type of the expected result, and, after successful completion
of the invocation, the result value. The attribute env stores the exceptions raised during the
operation’s execution. The TypeCodes of the user-defined exceptions that may be raised by
the operation are given in the attribute exceptions. The attributes contexts and ctx
are rarely used and make available additional information on the Request’s execution con-
text and on the names provided in the context clause of the operation definition, respectively.

The add...() operations are employed in order to add the different arguments to an exist-
ing Request object. For each argument, a new NamedValue instance has to be inserted
into the NVList of the Request objects. After creating a new NamedValue instance,
each add...() operation sets the appropriate flag in the NamedValue (see Section
6.6.1), and some also set the name.

Three different invocation models are distinguished for dynamic invocations. By means of
the corresponding operations, synchronous, asynchronous, and one-way communication can
be realized. The first two communication types can return a result value and, therefore, re-
quire that the expected return type be specified by means of invoking the operation
set_return_type(). Subsequently, the methods to execute the operation and to retrieve
the result may be called.

The first of these is operation invoke(), which puts into practice CORBA’s standard
communication model enabling blocking, synchronous invocations that do not return until
the corresponding operation is completed. The caller now has to inspect the Request ob-
ject’s attribute env of type Environment and check whether the invocation has raised an
exception. (Note that neither the CORBA specification nor the mapping document contains
an IDL or PIDL specification of the type Environment. The Java mapping only defines a
corresponding class; see Section 6.6.6.) If the method returned successfully, the result was
placed in the attribute result of the Request object and the inout and out parameter
in the attribute arguments of the Request object have also been updated correspond-
ingly. Besides reading the value of the result attribute, one further possibility to access the
result of the invocation is to employ the operation return_value(), which, however,
does not provide a NamedValue instance but returns an any instance containing the proper
value instead. Both possibilities are also available with the second invocation model, which
is now examined closer.

118 6 Important Elements of the ORB Runtime

The operation send_deferred() may be used to invoke an operation asynchronously.
Unlike invoke(), send_deferred() returns control to the caller immediately without
waiting for the operation to be finished by the target object. To enable the caller to access the
results of the invocation at a later point in time, two additional operations are defined:
get_response() and poll_response(). To determine whether the operation is done
and the result, if any, is available, the caller must use poll_response(). In that case, the
value TRUE is returned, otherwise FALSE. This approach is especially relevant to clients that
should not block while waiting for a return result to be established. On the other hand, the
operation get_response() can be invoked immediately; it blocks until the return result
and all values of the inout and out parameters are available. get_response() then
makes them ready in the corresponding attributes of the Request object where they can
subsequently be accessed by the caller. If the poll_response() approach is used and the
call has returned the result TRUE, then, get_response() must also be invoked in order
to provide the results in the Request object.

The third alternative provides the opportunity to send requests one-way. In conformity with
static IDL operation definitions specified oneway, return values, inout and out parame-
ters, or exceptions must not be used here so that flow of control is indeed one-way (see Sec-
tion 4.5.2). As a consequence, the Request object need not be accessed after such an invo-
cation. The operation to be used for this purpose is operation send_oneway().

Additional possibilities exist for the last two invocation models. For example, more than one
pre-initialized Request object may be used for dynamic invocations at the same time. The
available operations are defined in the ORB interface and we therefore address them in Sec-
tion 6.6.4.

6.6.4 ORB Operations for the Dynamic Invocation Interface

The ORB interface also provides a number of helper functions that are needed to generate
dynamic operation invocations. In Section 6.2, we did not discuss them; however, they
should be addressed here. These operations are required to generate an NVList’s arguments
for a Request object. The elements of that list are of type CORBA::NamedValue. In IDL
syntax, the operations are defined as follows:

Status create_list(in long count, out NVList new_list);
This operation allocates an empty list; the specified count argument is a “hint” to
help with storage allocation for the expected number of list elements. With the above
described NVList operations add_item() and add_value(), list items can be
inserted afterwards into the list.

Status create_operation_list(in OperationDef op_def,
 out NVList new_list);
This operation returns an NVList initialized with the argument descriptions (argu-
ment op_def of type OperationDef) for a given operation. The arguments of
type NamedValue are returned in the same order as they were defined in the opera-
tion definition.

6.6 Dynamic Invocation Interface 119

In addition to these two operations that generate NVList objects, the ORB interface defines
four operations that make it possible to issue multiple requests.

void send_multiple_requests_oneway(in RequestSeq req);
This operation initiates more than one request in parallel. A sequence of pre-
initialized Request objects must be provided to the operation as an argument of
type RequestSeq. As indicated by the operation name, the oneway invocation
model is employed. Since dynamic invocations following that model do not return
any information, no subsequent operation invocations for retrieval of results are
needed.

void send_multiple_requests_deferred(in RequestSeq req);
As above, more than one request is sent in parallel. And, again, a sequence of pre-
initialized Request objects must be provided to the operation as argument of type
RequestSeq. Here, the invocation follows the asynchronous model and, again, the
operation returns to the caller immediately without waiting for the requests to finish.
However, now reverse information flow is involved for the Request objects and the
two following operations are of importance.

boolean poll_next_response();
This operation determines whether or not any request has been completed. A TRUE
return indicates that at least one has; in that case, operation get_next_respon-
se() may be invoked to retrieve the results.

void get_next_response(out Request req);
This operation returns the next request that is completed. The results (return value,
inout and out arguments, and exceptions) are provided in the Request parame-
ter. The operation blocks until the results of the next completed request are available.

In order to complete the description of the DII, we now only lack the operations supporting
dynamic invocations that are provided by the Object interface. These operations are the
topic of the next section.

6.6.5 Object Operations for the Dynamic Invocation Interface

We saw that objects of type Request are used to execute dynamic invocations in the COR-
BA environment. To generate such a Request object, the operation create_re-
quest(), defined in the interface Object, is invoked:

void create_request(in Context ctx,
 in Identifier operation, in NVList arg_list,
 inout NamedValue result, out Request request,
 in Flags req_flag);

This operation creates an ORB request and prepares a dynamic invocation. The arguments
that have to be provided correspond to the attributes discussed in the context of the pseudo
interface Request and are not repeated here. The actual invocation occurs by calling in-
voke() or by using the send and get/poll_response calls.

One further operation from the Object interface relevant in connection with the Interface
Repository should not remain unmentioned,

120 6 Important Elements of the ORB Runtime

InterfaceDef get_interface();

In an Interface Repository, in which type information specified in IDL is available, the de-
scription of the interface of the CORBA object on which the operation was invoked can be
determined dynamically. This kind of type information is represented by objects of IDL type
CORBA::InterfaceDef. The operation get_interface() returns an object in the
Interface Repository that describes the IDL type of the target object of the invocation.

6.6.6 Java Mapping of DII-related Pseudo Interfaces and
Operations

We keep the following description of the Java mapping of the above-discussed DII-related
pseudo interfaces and operations rather brief since at this point one should be familiar with
all central information.

We introduced the pseudo interface CORBA::NamedValue in Section 6.6.1; in Java, it is
represented by the public and abstract class NamedValue declared in the package
org.omg.CORBA. Recall that IDL constants, which are defined at module scope, are in
Java mapped to interfaces of the same name (see Section 5.7).

package org.omg.CORBA;

public interface ARG_IN {
 public static final int value = 1;
}

public interface ARG_OUT {
 public static final int value = 2;
}

public interface ARG_INOUT {
 public static final int value = 3;
}

public interface CTX_RESTRICT_SCOPE {
 public static final int value = 15;
}

public abstract class NamedValue {
 public abstract String name();
 public abstract Any value();
 public abstract int flags();
}

Instances of a NamedValue can be created using the following ORB method:

public abstract NamedValue create_named_value(
 String name, Any value, int flags);

A call to this method constructs a new NamedValue object using the given name, value,
and argument mode flags.

 6.6 Dynamic Invocation Interface 121

As discussed in Section 6.6.2, lists of NamedValue instances are realized through instances
of type NVList. In Java, the IDL type NVList is mapped to the public and abstract de-
clared class NVList in package org.omg.CORBA.

package org.omg.CORBA;

public abstract class NVList {
 public abstract int count();
 public abstract NamedValue add(int flags);
 public abstract NamedValue add_item(String item_name,
 int flags);
 public abstract NamedValue add_value(String item_name,
 Any val, int flags);
 public abstract NamedValue item(int index)
 throws org.omg.CORBA.Bounds;
 public abstract void remove(int index)
 throws org.omg.CORBA.Bounds;
}

The central pseudo interface that enables dynamic invocations is the interface CORBA::Re-
quest, which we introduced in Section 6.6.3. Its Java mapping is designed as follows:

package org.omg.CORBA;

public abstract class Request {
 public abstract org.omg.CORBA.Object target();
 public abstract String operation();
 public abstract NVList arguments();
 public abstract NamedValue result();
 public abstract Environment env();
 public abstract ExceptionList exceptions();
 public abstract ContextList contexts();
 public abstract Context ctx();
 public abstract void ctx(Context c);
 public abstract Any add_in_arg();
 public abstract Any add_named_in_arg(String name);
 public abstract Any add_inout_arg();
 public abstract Any add_named_inout_arg(String name);
 public abstract Any add_out_arg();
 public abstract Any add_named_out_arg(String name);
 public abstract void set_return_type(TypeCode tc);
 public abstract Any return_value();
 public abstract void invoke();
 public abstract void send_oneway();
 public abstract void send_deferred();
 public abstract void get_response()
 throws org.omg.CORBA.WrongTransaction;
 public abstract boolean poll_response();
}

With one exception, this Java mapping does not show any noteworthy particularities. Con-
trary to the guideline in the PIDL definition, where the operation get_response() can-
not raise any exceptions, in the Java mapping, it is possible that an exception of type
org.omg.CORBA.WrongTransaction is thrown. This exception belongs to the class

122 6 Important Elements of the ORB Runtime

of CORBA User Exceptions. Such an exceptional situation can occur if OMG’s Transaction
Service [OMG03a] comes into operation and the transaction context for delivery of the origi-
nal Request differs from that pertaining to the subsequent invocation of operation get_
response().

There is only one thing that needs to be discussed here: the Java mapping of the type Envi-
ronment already envisaged above. This type, which is not specified in IDL or PIDL, serves
to make information on raised exceptions available. The method env() declared in class
Request has the corresponding Java class Environment as a return type. The Java map-
ping prescribes the following implementation of this data type:

package org.omg.CORBA;

public abstract class Environment {
 public abstract void exception(
 java.lang.Exception except);
 public abstract java.lang.Exception exception();
 public abstract void clear();
}

The effects of invoking these methods should be largely self-explanatory. With a call of the
method exception(), which expects an Exception object as an argument, an invoked
operation can supply a raised exception in the Environment object; and, with the parame-
ter-free exception() method, the caller can afterwards access that information. By means
of method clear(), the Environment object may be reset for future use.

After having described the pseudo interfaces dedicated for the DII, we discussed the opera-
tions from the ORB and the Object interfaces that are also relevant in the context of dy-
namic operation invocations. We keep to the order chosen above and begin with the presen-
tation of the Java mapping of the ORB operations corresponding to Section 6.6.4. There, we
first of all illustrated the two operations create_list() and create_operation_
list(), which generate NVList objects. In Java, these operations become the methods

public abstract NVList create_list(int count);

and

public NVList create_operation_list(
 org.omg.CORBA.Object oper);

Some minor irregularities concerning OMG’s general mapping rules of IDL operations can
be noticed here. As opposed to the IDL definition, where both operations have a return type
Status, this result is completely ignored in the Java versions. Instead, both Java methods
return the newly created NVList object and, thus, replace the out parameter of the same
name provided in the operation’s IDL definition.

The two create() methods are supplemented by a method create_environment(),
which can construct objects of the additional type Environment, discussed above. It is de-
clared with this signature:

 6.6 Dynamic Invocation Interface 123

public abstract Environment create_environment();

We saw that operations send_multiple_requests_oneway(), send_multiple_
requests_deferred(), poll_next_response(), and get_next_respon-
se() make it possible to issue multiple requests by means of a single operation invocation.
Subsequently, the return results, if any, can be retrieved request by request. The Java equiva-
lents of these operations go like this:

public abstract void send_multiple_requests_oneway(
 Request[] req);

public abstract void send_multiple_requests_deferred(
 Request[] req);

public abstract boolean poll_next_response();

public abstract Request get_next_response()
 throws org.omg.CORBA.WrongTransaction;

With respect to the exception class org.omg.CORBA.WrongTransaction, our expla-
nations pertaining to the method get_response() of class Request are valid analo-
gously.

The last group of operations that is required for employment of the Dynamic Invocation In-
terface is provided through the Object interface. By invoking operation create_re-
quest(), a client may generate Requests. On the Java level, a Request object is con-
structed through calling one of the next three methods on an object reference of type
org.omg.CORBA.Object:

Request _create_request(Context ctx, String operation,
 NVList arg_list, NamedValue result);

Request _create_request(Context ctx, String operation,
 NVList arg_list, NamedValue result,
 ExceptionList exclist, ContextList ctxlist);

Request _request(String operation);

One can see that the parameter Flags of the IDL definition of operation create_re-
quest() is not mapped to Java. It is useful for purposes of storage management in some
programming languages. In Java however, with its built-in garbage collection mechanism, it
is not needed. While the first two methods only differ in that the second version can also
process additional type information, the third method was supplemented in order to produce
partially pre-initialized Request objects. The first two methods have the four arguments in
common. Arguments ctx, operation, arg_list, and result are passed the execu-
tion context of the request, the name of the operation to be invoked, and the argument list for
the invocation as well as the expected result type. In addition, for the second method, the
TypeCodes of user-defined exceptions that may be thrown by the operation and the names
in the context clause of the operation may be specified in the arguments exclist und
ctxlist.

124 6 Important Elements of the ORB Runtime

At the end of Section 6.6.5, we mentioned operation get_interface(), which is also
defined in the pseudo interface CORBA::Object. When invoked, it dynamically gets a
CORBA::InterfaceDef object from the Interface Repository and describes a CORBA
object by providing details on the data types, operations, and attributes supported by that ob-
ject’s type. In Java, this operation is mapped to the method

org.omg.CORBA.Object _get_interface_def();

Some characteristics of this mapping to Java have to be mentioned here as well. On the one
hand, they concern the method’s name and, on the other, its return type. Since, due to spe-
cific Java-related reasons, the return type is the general org.omg.CORBA.Object type,
the result must be cast to the type org.omg.CORBA.InterfaceDef with the well-
known method narrow() from the corresponding helper class.

6.7 Dynamic Skeleton Interface

Through the DII, we became acquainted with a mechanism that allows clients to invoke op-
erations on CORBA objects at run-time without knowing the interface type of that object at
compile-time. The Dynamic Skeleton Interface provides an analogue for the server side. The
DSI enables an ORB to dynamically invoke an object implementation such that, rather than
being accessed through a skeleton that is specific to the particular operation and known at
compile-time, the object is reached through an interface. Just as the implementation of an ob-
ject cannot distinguish whether its client is using type-specific stubs or the DII, it makes no
difference for the object and it is not even perceptible whether an invocation was triggered
through a compiler-generated skeleton class or through the DSI. The functionality of the DSI
essentially relies on the basic idea of providing the same call up routine for arbitrary re-
quests. In the Java mapping, this is the generic method invoke(), declared in the abstract
class DynamicImplementation. All relevant information concerning the request (op-
eration to be invoked and arguments) is passed to this method. For that purpose, a pseudo ob-
ject of type ServerRequest is used; it brings to mind the Request type that is known
from the DII context.

6.7.1 Pseudo Interface CORBA::ServerRequest

In the CORBA specification, the pseudo interface ServerRequest is defined as follows
(note that instead of using the IDL type any, the standard wrongly employs the Java type
Any):

module CORBA
{
 ...

 interface ServerRequest
 {
 readonly attribute Identifier operation;
 void arguments(inout NVList nv);
 Context ctx();
 void set_result(in any val);

 6.7 Dynamic Skeleton Interface 125

 void set_exception(in any val);
 };
};

The operation attribute provides the identifier naming the operation being invoked. Op-
eration parameter types are specified and in and inout argument values are retrieved with
the operation arguments(). An NVList instance, initialized with the TypeCodes and
Flags describing the parameter types for the operation in the order in which they appear in
the IDL specification, is passed into arguments(). The ORB enters the argument values
into the NVList instance for subsequent usage by the server. The same NVList instance is
also used to return new values for the inout and out parameters once the server has fin-
ished processing.

When the operation’s IDL definition contains a context expression, the operation ctx() re-
turns the specified context information. The set_result() operation is used to specify a
return value for the value of the call in the form of an any instance. And, the operation
set_exception() is called any time the server has to return an exception to the client
instead of providing a return result.

6.7.2 Java Mapping of the DSI
In the DSI’s Java mapping, the public abstract class DynamicImplementation of pack-
age org.omg.PortableServer is described. This class has no corresponding IDL or
PIDL specification. A server intending to use the DSI has to implement that class. It inherits
from the Servant class (see Section 6.8), which is superclass for any object implementa-
tion.

package org.omg.PortableServer;

public abstract class DynamicImplementation
 extends Servant {
 abstract public void invoke(
 org.omg.CORBA.ServerRequest request);
}

The invoke() method receives requests issued to any CORBA objects incarnated by the
DSI servant and performs the processing necessary to execute the request. The server can ac-
cess the request argument of invoke() in order to determine the operation’s name and
its invocation arguments and to, finally, provide the results of the execution. The Server-
Request pseudo interface maps to the following Java class:

package org.omg.CORBA;

public abstract class ServerRequest {
 public String operation() {
 throw new org.omg.CORBA.NO_IMPLEMENT();
 }
 public abstract Context ctx();
 public void arguments(NVList nv) {
 throw new org.omg.CORBA.NO_IMPLEMENT();
 }

126 6 Important Elements of the ORB Runtime

 public void set_result(Any val) {
 throw new org.omg.CORBA.NO_IMPLEMENT();
 }
 public void set_exception(Any val) {
 throw new org.omg.CORBA.NO_IMPLEMENT();
 }
}

As to be expected, the class is named ServerRequest. It is declared public and abstract
and is declared in package org.omg.CORBA. However, due to the reasons already dis-
cussed in Section 6.2.5, not all methods are declared abstract; rather, some of them define de-
fault implementations that throw an org.omg.CORBA.NO_IMPLEMENT exception. These
method implementations have to be suitably overridden.

6.8 Java Class Servant

The class Servant, which implements the IDL type PortableServer::Servant, is
an abstract class declared in package org.omg.PortableServer. It is the superclass for
all servant implementations and provides methods that may be called by application develop-
ers as well as methods that are invoked by the POA itself and may be overridden by users in
order to adapt specific aspects of the servant’s behavior according to their requirements.

With the exception of the _all_interfaces() and _this_object() methods, all
methods defined in the Servant class may only be invoked after the servant has been asso-
ciated with an ORB instance. Otherwise, an org.omg.CORBA.BAD_INV_ORDER excep-
tion is raised. At any point in time, a servant may be associated to, at most, one ORB in-
stance. Via several means, a servant may be associated with the specified ORB:

through a call to _this_object(), passing an ORB instance as parameter; the ser-
vant becomes associated with the specified ORB;

by explicitly activating a servant with a POA by calling one of the POA methods ac-
tivate_object() or activate_object_with_id() (see Section 6.3.2);
this associates the servant with the ORB instance, which contains the POA on which
the servant has been activated;

by requesting a Servant instance from a ServantManager; the servant returned
from a ServantActivator’s method incarnate() or a ServantLoca-
tor’s method preinvoke() is associated with the ORB instance that contains the
POA on which the ServantManager is installed;

by installing the servant as a default servant on a POA; the servant becomes associ-
ated with the ORB instance, which contains the POA for which the servant is acting
as a default servant; and

by explicitly setting the servant by calling org.omg.CORBA_2_3.ORB.set_
delegate() on an ORB instance that is passed this servant.

 6.8 Java Class Servant 127

The Java class Servant is declared as follows:

package org.omg.PortableServer;

import org.omg.CORBA.ORB;
import org.omg.PortableServer.POA;

abstract public class Servant {
 // Convenience methods for application programmer
 final public org.omg.CORBA.Object _this_object() {
 return _get_delegate().this_object(this);
}

final public org.omg.CORBA.Object _this_object(ORB orb) {
 try {
 ((org.omg.CORBA_2_3.ORB)orb).set_delegate(this);
 }
 catch(ClassCastException e) {
 throw new org.omg.CORBA.BAD_PARAM(
 "POA Servant requires an instance of "
 + "org.omg.CORBA_2_3.ORB");
 }
 return _this_object();
}

final public ORB _orb() {
 return _get_delegate().orb(this);
}

final public POA _poa() {
 return _get_delegate().poa(this);
}

final public byte[] _object_id() {
 return _get_delegate().object_id(this);
}

// Methods which may be overridden by the
// application programmer

public POA _default_POA() {
 return _get_delegate().default_POA(this);
}

public boolean _is_a(String repository_id) {
 return _get_delegate().is_a(this, repository_id);
}

public boolean _non_existent() {
 return _get_delegate().non_existent(this);
}

public org.omg.CORBA.Object _get_interface_def() {
 return _get_delegate().get_interface_def(this);
}

128 6 Important Elements of the ORB Runtime

// methods for which the skeleton or application
// programmer must provide an an implementation

abstract public String[] _all_interfaces(
 POA poa, byte[] objectId);

// private implementation methods

private transient org.omg.PortableServer.portable.Delegate
 _delegate = null;

final public org.omg.PortableServer.portable.Delegate
 _get_delegate() {
 if (_delegate == null) {
 throw new org.omg.CORBA.BAD_INV_ORDER(
 "The Servant has not been associated with an "
 + "ORBinstance");
 }
 return _delegate;
}

final public void _set_delegate(
 org.omg.PortableServer.portable.Delegate delegate) {
 _delegate = delegate;
 }
}

We do not discuss the entire functionality of the servant class here. However, we give the de-
scription of a number of selected, often used methods. For example, the methods _orb(),
_poa(), and _object_id() return the instance of the ORB currently associated with the
servant, the servant’s POA, and the servant’s object ID, respectively. The latter is returned in
an array of type byte[].

The method _default_POA() may be invoked at any time to determine the servant’s
POA. By default, the root POA from the ORB instance associated with the servant is re-
turned. If a child POA is in use, developers should override this method since, otherwise, ob-
jects might erroneously be activated by the root POA that is returned by default.

Finally, the method _all_interfaces() should be overridden. It is used by the ORB to
obtain complete type information, i.e., a list of all interfaces implemented, from the servant.

6.9 Exercises

1. Which combination of the following implementation possibilities is admissible when
writing a CORBA application?

- client using stubs - client using skeletons - client using DII
- client using DSI - server using stubs - server using skeletons
- server using DII - server using DSI

 6.9 Exercises 129

2. When using the DII, a client is implemented without knowing the interface definition of
the server object. Identify real-world applications where that scenario would be interest-
ing.

3. When using the DSI, a server is implemented without knowing the interface definition of
the server object. Identify real-world applications where that scenario would be interest-
ing.

7 A First Example

Our first practical example is presented with the aid of three ORBs available free of charge:
first of all with the ORB included with the Java Software Development Kit, then with the
ORBs JacORB and OpenORB, which were developed within the framework of open source
activities. Installation instructions for JacORB and OpenORB may be found in Appendix E.
All the examples presented in this book assume that a command-line environment is avail-
able. Under Windows (95, 98, ME, NT, 2000, XP), the command window COMMAND.COM
or CMD.COM is required (see Figure 10); in the case of Unix-based systems, a shell, for ex-
ample, ksh, bash, csh, or tcsh, has to be employed.

Figure 10: Invocation of JDK’s IDL Compiler under Windows XP

The development of a CORBA-based application always starts with the specification of the
IDL interface definition; we already discussed IDL fundamentals in Chapter 4. In the first
example we just specify a simple counter. The counter is provided with an attribute value
of IDL type long. The value should not be manipulated directly and, therefore, is specified
readonly. In addition, the counter has the two operations inc() and dec(), which may
be invoked to increment and decrement the current counter value, respectively. Based on
these requirements, the IDL file Counter.idl has the following structure:

// Counter.idl

interface Counter
{
 readonly attribute long value;
 void inc();
 void dec();
};

This IDL specification can now be translated with the help of an IDL compiler. The IDL
compiler used has product-specific characteristics and is bound to a specific platform (hard-
ware, operating system) as well as to a specific programming language. In order to ease one’s
approach to this material, we briefly explain in the following how the IDL compilers shipped
with the JDK, JacORB, and OpenORB are invoked.

132 7 A First Example

7.1 JDK’s IDL Compiler

If we want to translate the Counter example with the IDL compiler contained in Sun Mi-
crosystems’ Java Software Development Kit, the invocation is

idlj –fall Counter.idl

The parameter –fall achieves that stubs (the client-side proxies) as well as skeletons (the
server-side proxies) are generated. Should we only need the client-side files, this can be ac-
complished by specifying the –fclient parameter. Setting the –fserver parameter, by
analogue, only generates the server-side files. If one intends to implement the delegation ap-
proach (see Section 5.14.1), the necessary parameter specifications are –fallTIE, to gener-
ate the required delegation files for the server as well as for the client, and –fserverTIE,
to generate only the delegation file for the server, respectively.

Should the idlj invocation produce an error, the development environment probably still
needs to be adapted. Under Windows, this can be done by setting the path variable:

set JDK_DIR=JDK_DIR
set PATH=%JDK_DIR%\bin;%PATH%

The value of JDK_DIR depends on the directory where the JDK was installed; in our sys-
tem, the value is c:\jdk1.5.0_01. The corresponding statement for a Unix development
platform and the shells ksh or bash is

export PATH=JDK_DIR/bin:$PATH

If, however, a csh or tcsh is used, the statement is

setenv PATH JDK_DIR/bin:$PATH

Unless one intends to enter that statement repeatedly before each compiler invocation or to
adjust the path variable correspondingly as a default setting, it is recommended that the
above lines be stored in a batch file, such as, e.g., environment.bat (for Windows) or
simply environment (for Unix, with read and execute permissions being set appropri-
ately). This batch file can then be executed as required, for example, once, before beginning
with application development. For Unix operating systems, the necessary file permissions
(read/write/execute) for the batch file can be modified with the chmod command.

When the parameter setting –fall is chosen, the JDK’s IDL to Java compiler generates the
following files:

CounterPOA.java
_CounterStub.java
CounterHolder.java
CounterHelper.java
Counter.java
CounterOperations.java

All these files are needed to implement the server application. The client application needs
all files except CounterPOA.java.

 7.2 JacORB’s IDL Compiler 133

7.2 JacORB’s IDL Compiler

The IDL compiler of JacORB is invoked, for example, with the command

idl Counter.idl

The same holds as above; should the idl command not be found, the environment variables
have to be adjusted. JacORB’s IDL compiler is located in the bin subdirectory of the
JacORB installation directory. Assuming that JacORB is installed in the directory Jac-
ORB_DIR, then the Windows path must be set like this:

set JDK_DIR=JDK_DIR
set JacORB_DIR=JacORB_DIR
set PATH=%JacORB_DIR%\bin;%JDK_DIR%\bin;%PATH%

In our system, the value for the placeholder JacORB_DIR is c:\JacORB_2_2_1. Again,
we recommend installing a batch file that contains the above statements. For a Unix-based
operating system, the settings must be provided analogous to the instructions in the preceding
section, Section 7.1. In the following, we limit our example specifications to Windows.

In addition to the six files generated from the JDK’s IDL compiler, JacORB automatically
produces the file CounterPOATie.java, which is needed to implement the delegation
approach.

We recommend creating two additional batch files: one for translating example applications
with the Java compiler and one for executing the examples with the Java interpreter. In the
following, we name those files jmake.bat and jrun.bat. They were written in a way
that allows us to use them unmodified for subsequent examples. The file jmake.bat con-
tains one single line,

javac –classpath "%JacORB_DIR%\lib\jacorb.jar;." %*

The main differences in file jrun.bat are that, first of all, the Java interpreter instead of
the Java compiler is invoked. Secondly, we provide the interpreter with the JacORB-specific
property information mentioned in Section 6.2.5.

java -Dorg.omg.CORBA.ORBClass=org.jacorb.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=
org.jacorb.orb.ORBSingleton
-cp "%JacORB_DIR%\lib\jacorb.jar;
%JacORB_DIR%\lib\avalon-framework-4.1.5.jar;
%JacORB_DIR%\lib\logkit-1.2.jar;." %*

Note that the above java invocation must be entered in its entirety on one single line with-
out any line feeds. It is just one single rather long statement. When a different JacORB ver-
sion is used, the version numbers of the jar files also differ; they have to be looked up in
the JacORB_DIR\lib directory. When writing the batch files, one should not forget to
provide values for the placeholders JacORB_DIR and JDK_DIR in the environment set-
tings that correspond to one’s installation.

134 7 A First Example

7.3 OpenORB’s IDL Compiler

Setting up the environment for OpenORB requires more work than in the first two cases. The
reason is that OpenORB’s IDL compiler is only provided in the form of Java classes and that
no dedicated batch processing file, as, for example, with JacORB, is available. Therefore, as
a first step, one should build one’s own batch file idl.bat; otherwise, the compiler invoca-
tion is cumbersome and prone to errors. Assume, again, that OpenORB_DIR denotes the in-
stallation directory (in our system c:\OpenORB-1.3.1). Then, this batch file looks like
this:

java -cp "%OpenORB_DIR%\lib\avalon-framework.jar;
%OpenORB_DIR%\lib\excalibur-configuration.jar;
%OpenORB_DIR%\lib\junit.jar;
%OpenORB_DIR%\lib\logkit.jar;
%OpenORB_DIR%\lib\openorb-1.3.1.jar;
%OpenORB_DIR%\lib\openorb_tools-1.3.1.jar;
%OpenORB_DIR%\lib\xerces.jar;."
org.openorb.compiler.IdlCompiler %*

When building that file, note that the above java invocation must be entered in one single
line as a whole without any line feeds. Note also that, when a different OpenORB version is
used, the version numbers of the jar files also differ; they have to be looked up in the Op-
enORB_DIR\lib directory. We suggest storing this batch file in directory OpenORB_
DIR\bin; otherwise, it is needed in the current directory when one intends to invoke the
IDL compiler.

Before the IDL compiler can be invoked, the environment has to, again, be adjusted by
means of

set JDK_DIR=JDK_DIR
set OpenORB_DIR=OpenORB_DIR
set PATH=%OpenORB_DIR%\bin;%JDK_DIR%\bin;%PATH%

Now, the interface definition of the Counter example can be compiled with the invocation

idl –d . Counter.idl

Specifying the parameter “–d .” has the result that the compiler-generated files are written
to the current directory “.”. Similar to JacORB, OpenORB automatically produces the file
CounterPOATie.java for implementations following the tie approach.

Like JacORB, the OpenORB needs a batch file jmake.bat, which translates an application
and contains one single line:

javac -classpath "%OpenORB_DIR%\lib\openorb-1.3.1.jar;
%OpenORB_DIR%\lib\openorb_tools-1.3.1.jar;." %*

It also needs a batch file jrun.bat, which runs the application:

java -Dorg.omg.CORBA.ORBClass=org.openorb.CORBA.ORB
 -Dorg.omg.CORBA.ORBSingletonClass=
 org.openorb.CORBA.ORBSingleton

 7.4 Recommended File Organization 135

-cp "%OpenORB_DIR%\lib\avalon-framework.jar;
%OpenORB_DIR%\lib\logkit.jar;
%OpenORB_DIR%\lib\openorb-1.3.1.jar;
%OpenORB_DIR%\lib\openorb_tools-1.3.1.jar;
%OpenORB_DIR%\lib\xerces.jar;." %*

When one wants to use the batch files, one should not forget to provide current values of
one’s installation for the placeholders OpenORB_DIR and JDK_DIR.

7.4 Recommended File Organization

In order to implement and test the Counter and the subsequent examples in a realistic envi-
ronment, we recommend using at least two TCP/IP-connected hosts: a server host and one or
more client hosts. Also, to obtain a running application fast, we suggest using the file struc-
ture described below in Figure 11 for deployment of the various IDL, batch, Java, and class
files on the server host. We store the Counter’s IDL file in the directory \Examp-
les\Counter and place the environment, jmake, and jrun batch files in the match-
ing ORB directories, according to the discussion in Sections 7.1 – 7.3.

Examples
 Counter
 Counter.idl
 JDK
 environment.bat
 Server
 CounterImpl.java
 Server.java

& files generated by the IDL compiler
 JacORB
 environment.bat
 Server
 jmake.bat
 jrun.bat
 CounterImpl.java
 Server.java

& files generated by the IDL compiler
 OpenORB
 environment.bat
 Server
 jmake.bat
 jrun.bat
 CounterImpl.java
 Server.java

& files generated by the IDL compiler

Figure 11: Suggested File Structure for the Server Host

For the client side, a similar structure is suggested (see Figure 14). If only a single host is
available, one should at least compile and run the server and the clients in their own com-
mand windows, each with its specific environment variable setting.

136 7 A First Example

7.5 Implementing Counter Using the Inheritance
Approach

We compile the Counter’s IDL file by setting the needed environment variables and invok-
ing the IDL compiler as follows:

JDK
In \Examples\Counter\JDK, execute the batch file environment.bat.
Change the directory to \Examples\Counter\JDK\Server and invoke the
IDL compiler through idlj –fall ..\..\Counter.idl.

JacORB
In \Examples\Counter\JacORB, execute the batch file environment.bat.
Change the directory to \Examples\Counter\JacORB\Server and invoke the
IDL compiler through idl ..\..\Counter.idl.

OpenORB
In \Examples\Counter\OpenORB, execute the batch file environ-
ment.bat. Change the directory to \Examples\Counter\OpenORB\Server
and invoke the IDL compiler through idl –d . ..\..\Counter.idl.

After these steps, the Java files generated by the IDL compiler are stored in the Server
subdirectory. Now, the actual Counter has to be implemented. If we follow the common
inheritance approach, the compiler-generated class CounterPOA acts as a superclass of the
implementation provided by programmers. We name our implementation class Counter-
Impl and thus follow the CORBA style to use the class names <Interface>Impl or
<Interface>_Impl.

CounterPOA is an abstract class that implements the operations interface CounterOp-
erations but does not provide any method declarations for the inherited methods. The
class CounterImpl, therefore, must implement all methods declared in the operations in-
terface (see Section 5.14). It is recommended to first inspect the declaration of the operations
interface that the IDL compiler generates. In the example, CounterOperations.java
is stored in the Server directory; it has the following form:

// CounterOperations.java

public interface CounterOperations {
 int value();
 void inc();
 void dec();
}

Therefore, one possible implementation of the CounterImpl class would declare an in-
stance variable count for the Counter’s value as well as the get method and the two in-
crement and decrement methods. The IDL type long of the readonly attribute value is
mapped to the Java type int, as defined in Table 8:

// CounterImpl.java

public class CounterImpl extends CounterPOA {

 7.5 Implementing Counter Using the Inheritance Approach 137

 private int count;
 public CounterImpl() {
 count = 0;
 }
 public void inc() {
 count++;
 }
 public void dec() {
 count--;
 }
 public int value() {
 return count;
 }
}

Since value is defined as readonly, no set method is necessary; that method would be de-
clared as void value(int v); in the operations interface. We store the Counter-
Impl file in the server directory (see Figure 11).

The UML class diagram in Figure 12 shows the dependencies between the Java classes and
interfaces generated by the IDL compiler on the one hand and the implementation class
CounterImpl on the other.

<<interface>>
org.omg.CORBA.portable.InvokeHandler

<<interface>>
CounterOperations

org.omg.PortableServer.Servant

<<interface>>
org.omg.CORBA.Object

<<interface>>
org.omg.CORBA.portable.IDLEntity

CounterImpl

CounterPOA
{abstract}

<<interface>>
Counter

_CounterStub

org.omg.CORBA.portable.ObjectImpl

CounterPOATie

<<delegates to>>

CounterDelegate

Tie Approach Inheritance Approach

Figure 12: Dependencies between the Generated Classes and the Implementation Class

138 7 A First Example

7.6 Implementing the Server Application for the
Inheritance Approach

After having provided a Java implementation for the IDL specification of the Counter, the
server side for the distributed CORBA application has to be implemented. When using the
JDK’s ORB, the server might be implemented as follows:

// Server.java

import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.System.*;

public class Server {
 public static void main(String[] args) {
 try {
 Properties props = getProperties();
 ORB orb = ORB.init(args, props);
 org.omg.CORBA.Object obj = null;
 POA rootPOA = null;
 try {
 obj = orb.resolve_initial_references("RootPOA");
 rootPOA = POAHelper.narrow(obj);
 } catch (org.omg.CORBA.ORBPackage.InvalidName e) { }
 CounterImpl c_impl = new CounterImpl();
 Counter c = c_impl._this(orb);
 try {
 FileOutputStream file =
 new FileOutputStream("Counter.ref");
 PrintWriter writer = new PrintWriter(file);
 String ref = orb.object_to_string(c);
 writer.println(ref);
 writer.flush();
 file.close();
 out.println("Server started."
 + " Stop: Ctrl-C");
 } catch (IOException ex) {
 out.println("File error: "
 + ex.getMessage());
 exit(2);
 }
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
}

In method main(), we at first initialize the ORB (ORB.init()) and determine the refer-
ence to the root POA (orb.resolve_initial_references()). Then, by means of

 7.6 Implementing the Server Application for the Inheritance Approach 139

method narrow() of class POAHelper, we cast the type of the reference from type
org.omg.CORBA.Object to type org.omg.PortableServer.POA. Subsequently,
we create a CounterImpl instance (our servant), associate it with the ORB that contains
the root POA, and implicitly activate it (_this()). As an alternative to writing

Counter c = c_impl._this(orb);

the two statements

byte[] servantId = rootPOA.activate_object(c_impl);
org.omg.CORBA.Object c =
 rootPOA.id_to_reference(servantId);

could be used. The first line explicitly activates the servant and provides an object ID. The
methods activate_object() and activate_object_with_id() can be invoked
here (see Section 6.3.2). Once the servant is activated, the server application can associate it
with its corresponding reference, either by employing the method servant_to_refer-
ence() or, as above, via id_to_reference(). (There is even a third alternative for
servant activation, see Exercise 2 at the end of the chapter.) We transform the IOR of the
constructed CounterImpl instance into its string representation (orb.object_to_
string()) and store the string in a file Counter.ref. Then, the reference to the POA’s
POAManager is determined and the manager is activated. Finally, invoking orb.run()
has the effect that the server application is ready for accepting client requests. We store the
file Server.java in the server host’s Server directory (see Figure 11). It is a typical
implementation for a simple CORBA server and many of our examples below are similar.

In the case of JacORB, the server declaration above can be used unmodified when we pro-
vide the initialization information for the ORB (Section 6.2.5) with the “-D” options in file
jrun.bat as shown in Section 7.2. Otherwise, the server needs the following lines at the
beginning of the first try block:

Properties props = getProperties();
props.put("org.omg.CORBA.ORBClass",
 "org.jacorb.orb.ORB");
props.put("org.omg.CORBA.ORBSingletonClass",
 "org.jacorb.orb.ORBSingleton");
setProperties(props);
ORB orb = ORB.init(args, props);

Corresponding additions are necessary when OpenORB is selected and the “-D” options are
omitted from jrun.bat in Section 7.3. In that case, the following lines are inserted at the
same location:

Properties props = getProperties();
props.put("org.omg.CORBA.ORBClass",
 "org.openorb.CORBA.ORB");
props.put("org.omg.CORBA.ORBSingletonClass",
 "org.openorb.CORBA.ORBSingleton");
setProperties(props);
ORB orb = ORB.init(args, props);

140 7 A First Example

In Section 6.2.5, we explained the necessity of these additional specifications. Sun’s JDK al-
ready contains declarations of the CORBA classes org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass, which need to be “hidden” so that the correct
ORB-specific classes are employed. The names of the respective product-specific classes
must be fully qualified, for example, org.jacorb.orb.ORB for JacORB or org.op-
enorb.CORBA.ORB in the case of OpenORB.

7.7 Compiling the Server Application

We compile the server application by invoking the Java compiler as follows:

JDK
In \Examples\Counter\JDK\Server, invoke the Java compiler through

:Server orb:org.omg.CORBA.ORB

init(args,props)

orb

rootPOA:org.omg.CORBA.POA

:org.omg.CORBA.POAHelper

obj

narrow(obj)

c_impl:CounterImpl

this(orb)

rootPOA

resolve_initial_references(“RootPOA“)

counter

Publish IOR

the_POAManager()

manager:org.omg.CORBA.POAManager

activate()

run()

manager

Figure 13: UML Sequence Diagram for the Server Application

7.8 Implementing the Client Application 141

javac Server.java. (The batch file environment.bat must have been pre-
viously executed in \Examples\Counter\JDK.)

JacORB
In \Examples\Counter\JacORB\Server, invoke the Java compiler through
jmake Server.java. (The batch file environment.bat must have been pre-
viously executed in \Examples\Counter\JacORB.)

OpenORB
In \Examples\Counter\OpenORB\Server, invoke the Java compiler through
jmake Server.java. (The batch file environment.bat must have been pre-
viously executed in \Examples\Counter\OpenORB.)

After successful compilation, the server is now ready to be started. Figure 13 demonstrates
the dynamics of the server application by means of a UML sequence diagram.

7.8 Implementing the Client Application

Now, we are finally able to implement a client application. We recommend organizing the
files on the client host similar to the structure on the server host shown in Figure 11.

Examples
 Counter
 Counter.idl
 JDK
 environment.bat
 Client
 Client.java

& files generated by the IDL compiler
 JacORB
 environment.bat
 Client
 jmake.bat
 jrun.bat
 Client.java

& files generated by the IDL compiler
 OpenORB
 environment.bat
 Client
 jmake.bat
 jrun.bat
 Client.java

& files generated by the IDL compiler

Figure 14: Suggested File Structure for the Client Host

Note that a servant (the CounterImpl class) is not needed on the client side. A very sim-
ple command-line version of a client that is implemented for the JDK ORB could look as fol-
lows:

142 7 A First Example

// Client.java

import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import static java.lang.System.*;

public class Client {
 public static void main(String[] args) {
 try {
 Properties props = getProperties();
 ORB orb = ORB.init(args, props);
 String ref = null;
 org.omg.CORBA.Object obj = null;
 try {
 Scanner reader =
 new Scanner(new File("Counter.ref"));
 ref = reader.nextLine();
 } catch (IOException ex) {
 out.println("File error: " + ex.getMessage());
 exit(2);
 }
 obj = orb.string_to_object(ref);
 if (obj == null) {
 out.println("Invalid IOR");
 exit(4);
 }
 Counter c = null;
 try {
 c = CounterHelper.narrow(obj);
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 }
 int inp = -1;
 do {
 out.print("Counter value: " + c.value()
 + "\nAction (+/-/e)? ");
 out.flush();
 do {
 try {
 inp = in.read();
 } catch (IOException ioe) { }
 } while (inp != '+' && inp != '-' && inp != 'e');
 if (inp == '+')
 c.inc();
 else if (inp == '-')
 c.dec();
 } while (inp != 'e');
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
}

7.10 Running the Application 143

Like the server application, the client has to initialize the ORB first (ORB.init()). The
POA is not needed here since we write a pure client application, which does not instantiate
CORBA objects but instead relies on the functionality offered by the server object. Next, the
IOR of the server object is read from the file Counter.ref and converted from its stringi-
fied form (orb.string_to_object()). Finally, the type of the reference is cast from
type org.omg.CORBA.Object to type Counter with the help of the CounterHel-
per method narrow(). The ORB-related preparations are now complete and the user can
invoke the remote counter’s methods with the inputs ‘+’ or ‘-’.

If JacORB or OpenORB are to be used instead of the JDK ORB, the client ORB has to be in-
formed of the ORBClass and ORBSingletonClass to use analogous to the procedure
for the server discussed in Section 7.6. We store the file Client.java in the client hosts
Client directory (see Figure 14).

7.9 Compiling the Client Application

On the client host, we compile the IDL specification of the Counter and the client applica-
tion as follows:

JDK
In \Examples\Counter\JDK, execute the batch file environment.bat.
Change the directory to \Examples\Counter\JDK\Client and invoke the
IDL compiler through idlj –fall ..\..\Counter.idl. Invoke the Java
compiler through javac Client.java.

JacORB
In \Examples\Counter\JacORB, execute the batch file environment.bat.
Change the directory to \Examples\Counter\JacORB\Client and invoke the
IDL compiler through idl ..\..\Counter.idl. Invoke the Java compiler
through jmake Client.java.

OpenORB
In \Examples\Counter\OpenORB, execute the batch file environ-
ment.bat. Change the directory to \Examples\Counter\OpenORB\Client
and invoke the IDL compiler through idl –d . ..\..\Counter.idl. Invoke
the Java compiler through jmake Client.java.

After successful compilation, the client is also ready to be started.

7.10 Running the Application

We first turn to the server host, set the environment variables as needed, and start the server
by entering

java Server in \Examples\Counter\JDK\Server,
jrun Server in \Examples\Counter\JacORB\Server, or
jrun Server in \Examples\Counter\OpenORB\Server, respectively.

144 7 A First Example

The server is started and the IOR of the server object is written to the file Counter.ref in
the current Server subdirectory. As discussed in Section 3.4.2, the IOR contains all the in-
formation that a remote client needs in order to localize the server object and to invoke op-
erations on it: IP address and port number of the server host, repository ID of the server ob-
ject, object ID, etc. JacORB provides a tool, dior, which displays the IOR and enables us to
inspect its content by the command dior –f Counter.ref.

The file Counter.ref must now be copied to the client host, more precisely to the direc-
tory where the client application is started, i.e., \Examples\Counter\JDK\Client,
\Examples\Counter\JacORB\Client, or \Examples\Counter\OpenORB\
Client, respectively. One can transfer the file via FTP, provide it on an FTP or HTTP
server for download, send it by e-mail, or use any other means. This procedure is rather cum-
bersome and time-consuming. However, since CORBA version 2.0, usage of the Naming
Service offers a far better alternative, which we present in Chapter 17. As soon as the client
has access to the IOR, it can be started. This is done by invoking

java Client in \Examples\Counter\JDK\Client,
jrun Client in \Examples\Counter\JacORB\Client, or
jrun Client in \Examples\Counter\OpenORB\Client, respectively.

The complete application can now be tested, provided that the server is up and running.

7.11 Implementing Counter Using the Delegation
Approach

The delegation approach is used when the implementation class needs to inherit from a su-
perclass different than the servant class. Due to Java’s single inheritance property, the inheri-
tance approach demonstrated in Section 7.5 is then out of the question. In our example, we
now provide a GUI for the server-side Counter, to be realized in class CounterDele-
gate. To be able to add this user interface to any top-level window, such as JApplet,
JDialog, or JFrame, we use the JPanel as a superclass. We recommend having a look
at the file CounterPOATie.java that the IDL compiler generates before starting the im-
plementation. (In the case of the JDK ORB, remember to invoke idlj with the parameter
–fallTIE or –fserverTIE.)

// CounterPOATie.java

public class CounterPOATie extends CounterPOA {
 private CounterOperations _impl;
 public CounterPOATie(CounterOperations delegate) {
 this._impl = delegate;
 }
 public int value() {
 return _impl.value();
 }
 public void inc() {
 _impl.inc();
 }
 public void dec() {

 7.12 Implementing the Server Application for the Delegation Approach 145

 _impl.dec();
 }
 ...
}

Three properties of that class are noticeable: it declares an instance variable _impl of type
CounterOperations; it has a one-argument constructor that sets this variable; and all
three interface methods, value(), inc(), and dec(), simply delegate execution to the
CounterOperations object. These properties are typical for any IDL compiler-generated
tie class. As a consequence, developers must write an implementation class that implements
the operations interface. In the server application, an instance of the implementation class is
instantiated and passed to the constructor of the tie class. In our example, an implementation
could look as follows:

// CounterDelegate.java

import javax.swing.*;

public class CounterDelegate extends JPanel
 implements CounterOperations {
 private int count;
 private JTextField value;
 public CounterDelegate() {
 count = 0;
 add(new JLabel("Counter value: ", JLabel.RIGHT));
 add(value =
 new JTextField((String.valueOf(count)), 10));
 value.setEditable(false);
 }
 public void inc() {
 value.setText(String.valueOf(++count));
 }
 public void dec() {
 value.setText(String.valueOf(--count));
 }
 public int value() {
 return count;
 }
}

In the constructor, the counter (count) is initialized and the GUI is created. The methods
inc(), dec(), and value() implement the operations interface and display the new
counter value.

7.12 Implementing the Server Application for the
Delegation Approach

The delegation-based server application only differs in two significant ways from the inheri-
tance-based server application described in Section 7.6. A CounterPOATie instance is
used where, before, a CounterImpl was needed. And, a CounterDelegate instance is
created and passed to the CounterPOATie constructor. The CounterPOATie can then

146 7 A First Example

delegate all remote invocations to the delegate. Furthermore, a JFrame is created, packed,
and set visible; the panel (the CounterPOATie) is added to that frame.

The server application then looks as follows:

// DelegationServer.java

import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import javax.swing.*;
import static java.lang.System.*;

public class DelegationServer {
 public static void main(String[] args) {
 try {
 CounterDelegate cd;
 JFrame f = new JFrame("Counter Server");
 f.getContentPane().add(cd = new CounterDelegate());
 f.pack();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setVisible(true);
 Properties props = getProperties();
 ORB orb = ORB.init(args, props);
 org.omg.CORBA.Object obj = null;
 POA rootPOA = null;
 try {
 obj = orb.resolve_initial_references("RootPOA");
 rootPOA = POAHelper.narrow(obj);
 } catch (org.omg.CORBA.ORBPackage.InvalidName e) { }
 CounterPOATie c_impl = new CounterPOATie(cd);
 Counter c = c_impl._this(orb);
 try {
 FileOutputStream file =
 new FileOutputStream("Counter.ref");
 PrintWriter writer = new PrintWriter(file);
 String ref = orb.object_to_string(c);
 writer.println(ref);
 writer.flush();
 file.close();
 out.println("Server started."
 + " Stop: Close-Button");
 } catch(IOException ex) {
 err.println("File error: " + ex.getMessage());
 exit(2);
 }
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
}

 7.13 A GUI for the Client Application 147

The above implementation is written for the JDK’s ORB. If another ORB is to be used, the
information on the two ORB-specific classes has to be provided in the same way as in the in-
heritance example (“-D” options in jrun or props.put() in the Java sources). After
storing the DelegationServer and the CounterDelegate in the Server subdirec-
tory on the server host, we can compile and run the server application exactly as described
above in Section 7.7. The DelegationServer can be combined with any number of our
client applications.

Figure 15: GUI for the Server Application

7.13 A GUI for the Client Application

We now show how the client can be equipped with a graphical user interface. The following
implementation consists mainly of three methods: initializeORB(), getRef(), and
createGUI(). The first two methods combine all CORBA-specific statements like the
main() method of the command-line client presented in Section 7.8. createGUI(), on
the other hand, contains the GUI specifics: a label for the current Counter value, an “In-
crement” and a “Decrement” button, and the corresponding ActionListeners that trig-
ger the respective remote inc() and dec() invocations. The constructor, therefore, first
initializes the middleware, then reads and casts the server object’s reference, and then creates
the GUI. The main() method simply creates a JFrame, adds a new GUIClient, packs
the frame, and sets it visible.

// GUIClient.java

import java.awt.GridLayout;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import javax.swing.*;
import org.omg.CORBA.*;
import static java.lang.System.*;

public class GUIClient extends JPanel {
 private ORB orb;
 private Counter c;
 private void initializeORB(String[] args) {
 Properties props = getProperties();
 orb = ORB.init(args, props);
 }
 private org.omg.CORBA.Object getRef(String refFile) {
 String ref = null;
 try {
 Scanner reader = new Scanner(new File(refFile));
 ref = reader.nextLine();
 } catch (IOException ex) {
 out.println("File error: "

148 7 A First Example

 + ex.getMessage());
 exit(2);
 }
 org.omg.CORBA.Object obj = orb.string_to_object(ref);
 if (obj == null) {
 out.println("Invalid IOR");
 exit(4);
 }
 return obj;
 }
 private void createGUI() {
 setLayout(new GridLayout(2, 1));
 JPanel p = new JPanel();
 final JLabel value;
 p.add(new JLabel("Counter value: ", JLabel.RIGHT));
 p.add(value = new JLabel(String.valueOf(c.value())));
 add(p);
 p = new JPanel();
 JButton inc, dec;
 p.add(inc = new JButton("Increment"));
 p.add(dec = new JButton("Decrement"));
 add(p);
 inc.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 c.inc();
 value.setText(String.valueOf(c.value()));
 }
 });
 dec.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 c.dec();
 value.setText(String.valueOf(c.value()));
 }
 });
 }
 public GUIClient(String[] args, String refFile) {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 try {
 c = CounterHelper.narrow(obj);
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 }
 createGUI();
 }
 public static void main(String[] args) {
 try {
 String refFile = "Counter.ref";
 JFrame f = new JFrame("Counter Client");
 f.getContentPane().add(
 new GUIClient(args, refFile));
 f.pack();
 f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 f.setVisible(true);

 7.15 Modules 149

 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
}

One or more instances of the GUIClient can be started together with one or more in-
stances of the command-line Client. They may be provided with the IOR of the Server
or the DelegationServer discussed above. Figure 16 below demonstrates the look of
the user interface on a client host running Windows. Again, the above code is based on the
JDK ORB; if another ORB is to be used, information on the ORBClass and the ORB-
SingletonClass must be passed in one of the ways discussed in Section 7.6.

Figure 16: GUI for the Client Application

7.14 Using Different ORBs

Sometimes it may be useful to install several different ORBs on the hosts in one’s system,
for example, when a CORBA application has to be checked for its portability or when
CORBA’s interoperability is to be tested. This does not pose any problems if the simple ad-
vice given in this chapter is followed. For each ORB, its own subdirectories (see Figure 11
and Figure 14), with its own environment, jmake, and jrun files (see Sections 7.1, 7.2,
and 7.3), should be provided so that each component of the distributed application can access
only the classes that it really needs. Otherwise, a “mix” of different CORBA classes might
result and yield unexpected system behavior.

7.15 Modules

In Section 4.8, we mentioned the OMG’s style guide recommendations to renounce the use
of file-level definitions and the request to always embed interface declarations and other
definitions in modules. Throughout this chapter, we have so far ignored these recommenda-
tions for reasons of simplicity. However, now, with the first simple examples running, we
can remedy these shortcomings.

We still deal with the Counter example but, now, we begin with the following IDL speci-
fication, where the Counter’s interface is defined in module scope:

// Counter.idl

module Count
{

150 7 A First Example

 interface Counter
 {
 readonly attribute long value;
 void inc();
 void dec();
 };
};

In order to distinguish between our implementations, we create a new subdirectory Mod-
Counter below the Examples directory, store the new IDL specification there, and create
ORB and client/server subdirectories below ModCounter completely analog to the direc-
tory structures shown in Figure 11 and Figure 14. The batch files for setting environment
variables and for invoking the IDL compiler, the Java compiler, and the Java interpreter can
be reused from Sections 7.1, 7.2, and 7.3 exactly as they were specified there.

In accordance with the IDL to Java mapping specification (see Section 5.6), the JDK ORB’s,
JacORB’s, and OpenORB’s IDL compiler deal with the module definition in the same way.

A subdirectory Count is generated below the Server or Client directory, respec-
tively, and the Java classes and interfaces Counter, CounterHelper, etc., are
stored there.

The class and interface declarations begin with a package declaration, for example,

// CounterOperations.java

package Count;

public interface CounterOperations {
 int value();
 void inc();
 void dec();
}

Now, to implement the Counter using the inheritance approach, we store the implementa-
tion class in the Count directory and begin it with the package declaration

// CounterImpl.java

package Count;

public class CounterImpl extends CounterPOA {
 private int count;
 public CounterImpl() {
 count = 0;
 }
 ... rest as above
}

It is essential to declare the class, its constructor, and all methods public so that they can
be accessed from outside the Count package. We suggest storing the server application in
the Server directory. The only difference to the implementation given in Section 7.6 is that
it has to begin with an import declaration:

 7.16 Exercises 151

// Server.java

import Count.*;
import ...

public class Server { ... as above }

Analogously, we store the client application in the Client directory, begin it with an im-
port declaration, and reuse the implementation given in Section 7.8:

// Client.java

import Count.*;
import ...

public class Client { ... as above }

The steps for compiling and running server and client and copying the server IOR are no dif-
ferent than as described above.

7.16 Exercises

1. Implement a server with an operation dump() that simply writes any input in the client’s
command window to the server’s command window.

2. Check that a third alternative for servant activation exists: in Servant.java, replace
the statement

Counter c = c_impl._this(orb);

with

org.omg.CORBA.Object c =
 rootPOA.servant_to_reference(c_impl);

3. Implement a server with the following features:

a) A subdirectory glossary exists relative to the Server directory. The glossary
contains a number of simple textiles such as adapter, interface, orb, ref-
erence, etc. And, each of these files contains a text explaining the term used as file
name.

b) The server provides two operations. Operation list() returns the glossary file
names as a sequence of strings. Operation display() returns the content of a
file; the file name is passed as an in parameter. If anything is wrong with the glos-
sary’s file structure, an exception is raised.

4. Implement a server for the following IDL specification:

// Stocks.idl

152 7 A First Example

module Stocks
{
 typedef string Share;
 typedef sequence<Share> ShareSeq;
 exception NotFound { Share s; };
 interface StockServer
 {
 double price(in Share s) raises(NotFound);
 ShareSeq shares();
 };
};

In the implementation of the StockServer interface, one might provide Shares and
their prices in this way:

private SortedMap<String, Double> prices;
 public StockServerImpl() {
 prices = new TreeMap<String, Double> ();
 prices.put("Am. Java", 26.65);
 prices.put("SciComp", 14.68);
 ...
 }
 ...
}

8 Generating Remote Objects

When developing applications accessing distributed objects, it is often important to equip the
client with the possibility of constructing and destroying server-side objects on demand. In
distributed, object-oriented systems, where resource user and resource manager reside on dif-
ferent, locally remote hosts, a new remote object cannot be created as usual by simply invok-
ing new(). Often, the “Factory” pattern is implemented to provide the client with the means
of generating and invoking server-side objects at run-time.

In this section, we describe how such factory objects can be implemented within the CORBA
framework. The following example falls back to our Counter example as it was in Section
7.15. We begin with the implementation of the server and assume that a directory structure is
prepared analogous to Figure 11, i.e., Counter.idl and CounterFactory.idl are
stored in \Examples\CounterFactory.

The IDL interface of a CounterFactory may be defined as follows:

// CounterFactory.idl

#include "\Examples\CounterFactory\Counter.idl"

module CFactory
{
 interface CounterFactory
 {
 enum Kind { SHARED, UNSHARED };
 Count::Counter create(in Kind k);
 void destroy(in Count::Counter c);
 };
};

The #include directive causes the compiler to read the IDL file Counter.idl before
starting with the translation of CounterFactory.idl. This step is necessary since the
CounterFactory interface uses the Counter type. As the Counter interface is de-
fined in module Count, its name must be qualified with the module name (see Section 4.8).
In the CounterFactory, an enumerated type Kind is defined with the enumerators SHA-
RED and UNSHARED. Further, two operations create() and destroy() are defined,
which create a new Counter instance and destroy it, respectively. With the create() op-
eration’s Kind parameter, we specify whether the newly created Counter is exclusively
made available for the invoking client application (UNSHARED), or whether it is meant to be
used by other clients as well (SHARED). All the Counters in the preceding chapter, Chap-
ter 7, were of type SHARED.

154 8 Generating Remote Objects

8.1 Implementing the CounterFactory Servant

After setting the environment variables as needed (see Chapter 7), we compile the Coun-
terFactory as follows:

JDK
In \Examples\CounterFactory\JDK\Server, invoke the IDL compiler
through idlj –fall –emitAll ..\..\CounterFactory.idl.

JacORB
In \Examples\CounterFactory\JacORB\Server, invoke the IDL compiler
through idl -all ..\..\CounterFactory.idl.

OpenORB
In \Examples\CounterFactory\OpenORB\Server, invoke the IDL com-
piler through idl –d . –all ..\..\CounterFactory.idl.

The additional parameters –emitAll and –all, respectively, make sure that the Java files
for the Counter are also generated. After these steps, the files generated by the IDL com-
piler are stored in the Server subdirectories Count, CFactory, and CFactory\Coun-
terFactoryPackage. If they do not yet exist, these subdirectories are created.We reuse
CounterImpl.java, implementing the Counter interface from Section 7.15, and,
again, store that file in the Count subdirectory below the Server directory.

For the implementation of the CounterFactory interface, we also follow the inheritance
approach:

// CounterFactoryImpl.java

package CFactory;

import CFactory.CounterFactoryPackage.*;
import Count.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;

public class CounterFactoryImpl
 extends CounterFactoryPOA {
 private ORB orb;
 private POA poa;
 private Counter singleton;
 public CounterFactoryImpl(ORB orb, POA poa) {
 this.orb = orb;
 this.poa = poa;
 CounterImpl c_impl = new CounterImpl();
 singleton = c_impl._this(orb);
 }
 public Counter create(Kind k) {
 if (k == Kind.SHARED)
 return singleton;
 else {
 CounterImpl c_impl = new CounterImpl();
 Counter unshared = null;

 8.1 Implementing the CounterFactory Servant 155

 try {
 byte[] oid = poa.activate_object(c_impl);
 unshared = CounterHelper.
 narrow(poa.id_to_reference(oid));
 } catch (Exception ex) { }
 return unshared;
 }
 }
 public void destroy(Counter c) {
 if (!orb.object_to_string(singleton).
 equals(orb.object_to_string(c))) {
 try {
 byte[] oid = poa.reference_to_id(c);
 poa.deactivate_object(oid);
 } catch (Exception ex) {
 System.out.println("Object not found.");
 }
 c._release();
 }
 }
}

As usual for the inheritance approach, the implementation class extends the corresponding
POA class, here the CounterFactoryPOA. The instance variable orb is used to activate
the SHARED instance of the Counter in the constructor as well as for comparison of refer-
ences in the method destroy(). This shared Counter variant is treated as a Singleton,
therefore, only a single instance (singleton) exists, which is created, activated, and asso-
ciated with the POA in the constructor. The variable poa is used to activate or deactivate
Counter instances and to obtain their IOR. The UNSHARED variants of the Counter are
only created through explicit create() invocations; their activation does not follow the
familiar approach:

CounterImpl c_impl = new CounterImpl();
Counter unshared = c_impl._this(orb);

Instead, here, we had to write

CounterImpl c_impl = new CounterImpl();
Counter unshared = null;
try {
 byte[] oid = poa.activate_object(c_impl);
 unshared = CounterHelper.
 narrow(poa.id_to_reference(oid));
} catch (Exception ex) { }

because, as opposed to JacORB and OpenORB, the JDK ORB causes problems with the first
approach; the application compiles properly but causes communication problems at run-time.
For portability reasons, we recommend implementing the second approach since it works
well with all ORBs that we examined.

The method destroy() demonstrates how destruction of an unshared servant must be
handled. At first, the servant must be deactivated; then, it can be released and removed from
the set.

156 8 Generating Remote Objects

We store this file in the subdirectory CFactory below the Server directory; note the
package declaration at its beginning.

8.2 Implementing the CounterFactory Server

The implementation of the server application that creates a CounterFactory instance is
rather straightforward. We can reuse our implementation from Section 7.6 to a large extent.
Here, we quote the source code in its entirety. However, we group those parts that are rele-
vant for future examples into two methods, initializeORB() and putRef(), whose
bodies are not repeated time and again.

For the above example, the implementation could look like this (note the package declara-
tions at the beginning):

// CFServer.java

import Count.*;
import CFactory.*;
import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.System.*;

public class CFServer {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 Properties props = getProperties();
 orb = ORB.init(args, props);
 try {
 rootPOA = POAHelper.narrow(orb.
 resolve_initial_references("RootPOA"));
 } catch (org.omg.CORBA.ORBPackage.InvalidName ex) { }
 }
 private void putRef(org.omg.CORBA.Object obj,
 String refFile) {
 try {
 FileOutputStream file =
 new FileOutputStream(refFile);
 PrintWriter writer = new PrintWriter(file);
 String ref = orb.object_to_string(obj);
 writer.println(ref);
 writer.flush();
 file.close();
 out.println("Server started. Stop: Ctrl-C");
 } catch (IOException ex) {
 out.println("File error: "
 + ex.getMessage());
 exit(2);
 }
 }

 8.3 Implementing the CounterFactory Client 157

 public CFServer(String[] args, String refFile) {
 try {
 initializeORB(args);
 CounterFactoryImpl cf_impl =
 new CounterFactoryImpl(orb, rootPOA);
 CounterFactory cf = cf_impl._this(orb);
 putRef(cf, refFile);
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "CounterFactory.ref";
 new CFServer(args, refFile);
 }
}

We store this file in the Server directory and compile it as usual by invoking javac CF-
Server.java (JDK) or jmake CFServer.java (JacORB and OpenORB) in that cur-
rent directory.

8.3 Implementing the CounterFactory Client

We now continue on the client host and carry out the necessary preparatory steps. We create
a directory structure analogous to Figure 14. We store the IDL files Counter.idl and
CounterFactory.idl in \Examples\CounterFactory. And, we translate the
CounterFactory by invoking the IDL compiler in the respective Client subdirectory
in the same way as described above in Section 8.1.

The actual client implementation also differs only slightly from the client applications dis-
cussed in Chapter 7. For reasons of completeness, we, once again, quote it in its entirety.
However, as above, we group the parts initializing the ORB and getting the server object’s
reference that are reusable in future examples in separate methods initializeORB() and
getRef(). Again, note the package declarations at the beginning of the file.

// CFClient.java

import Count.*;
import CFactory.*;
import CFactory.CounterFactoryPackage.*;
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import static java.lang.System.*;

public class CFClient {
 private ORB orb;
 private void initializeORB(String[] args) {
 Properties props = getProperties();

158 8 Generating Remote Objects

 orb = ORB.init(args, props);
 }
 private org.omg.CORBA.Object getRef(String refFile) {
 String ref = null;
 try {
 Scanner reader = new Scanner(new File(refFile));
 ref = reader.nextLine();
 } catch (IOException ex) {
 out.println("File error: "
 + ex.getMessage());
 exit(2);
 }
 org.omg.CORBA.Object obj = orb.string_to_object(ref);
 if (obj == null) {
 out.println("Invalid IOR");
 exit(4);
 }
 return obj;
 }
 public CFClient(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 CounterFactory cf =
 CounterFactoryHelper.narrow(obj);
 Counter c;
 if (args[0].equalsIgnoreCase("Shared"))
 c = cf.create(Kind.SHARED);
 else
 c = cf.create(Kind.UNSHARED);
 int inp = -1;
 do {
 out.print("Counter value: " + c.value()
 + "\nAction (+/-/e)? ");
 out.flush();
 do {
 try {
 inp = in.read();
 } catch (IOException ioe) { }
 } while (inp != '+' && inp != '-' && inp != 'e');
 if (inp == '+')
 c.inc();
 else if (inp == '-')
 c.dec();
 } while (inp != 'e');
 cf.destroy(c);
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }

8.5 Exercises 159

 public static void main(String[] args) {
 if (args.length < 1) {
 out.println("Start with"
 + "\n\tjava/jrun CFClient Shared\nor"
 + "\n\tjava/jrun CFClient Unshared");
 return;
 }
 String refFile = "CounterFactory.ref";
 new CFClient(args, refFile);
 }
}

The client has to be provided with a command-line argument when the Java interpreter is in-
voked. When started in the form

java CFClient SharedCounter

the existing SHARED Counter is used; otherwise, an UNSHARED Counter is created. For
a JacORB or an OpenORB implementation, java is to be replaced by jrun.

This file goes to the Client directory and is compiled as usual by invoking javac CF-
Client.java (JDK) or jmake CFClient.java (JacORB and OpenORB) in that cur-
rent directory.

8.4 Running the Application

The steps necessary for testing the complete application are completely analogous to the pro-
cedure for the first example (see Section 7.10).

On the server host, start the server by invoking java CFServer (JDK) or jrun
CFServer (JacORB and OpenORB) in the Server directory.

Copy the file containing the CFServer’s IOR to the client host. The file name is
CounterFactory.ref; it has to be stored in the Client directory.

On the client hosts, start the CFClients. Invoke java CFClient Shared or
java CFClient Unshared (JDK). Invoke jrun CFClient Shared or
jrun CFClient Unshared (JacORB and OpenORB). These commands must
be entered in the Client directory.

It is worthwhile to experiment with several shared and unshared clients that operate concur-
rently to see how the same or a new Counter is modified by the remote invocations.

8.5 Exercises

1. Implement a GUI version for the CFClient.

2. Implement a “bounded” variant of the CounterFactory that ensures that a given
maximum number of unshared Counter objects are not exceeded on the server host. If

160 8 Generating Remote Objects

the maximum is reached and a client tries to create another unshared Counter, let the
CounterFactory throw a TooManyObjects exception. Test the implementation
with a very small maximum, e.g., 2.

9 Alternatives for Designing IDL
Interfaces

In IDL, an interface with a specific function can be specified in various different ways that
resemble each other. To discuss the possibilities, we examine an application providing the
current time of a system clock. The simplest procedure for determining and managing the
chronological sequence of events in distributed systems is based on a central system clock. In
this chapter, we concentrate on the discussion of the alternative possibilities offered by IDL
for that task and neglect the existing sophisticated algorithms that may be used for synchro-
nization of the clocks in a distributed system.

9.1 Attributes vs. Operations

The first solution for specifying a central, server-side clock with IDL could look as follows:

// TimeServer.idl
// Version 1

module Timer
{
 interface TimeServer
 {
 readonly attribute unsigned long hours;
 readonly attribute unsigned long minutes;
 readonly attribute unsigned long seconds;
 };
};

Here, we use three readonly attributes. Following the pattern outlined in Figure 11, we
store the IDL file in a directory \Examples\TimeServer\1 on the server host. After in-
voking the IDL compiler, we inspect the operations interface TimeServerOperations,
which is generated in the package subdirectory Timer below the Server directory. A suit-
able implementation of the interface would be

// TimeServerImpl.java

package Timer;

import static java.util.Calendar.*;

public class TimeServerImpl extends TimeServerPOA {
 public int hours() {
 return getInstance().get(HOUR_OF_DAY);
 }
 public int minutes() {

162 9 Alternatives for Designing IDL Interfaces

 return getInstance().get(MINUTE);
 }
 public int seconds() {
 return getInstance().get(SECOND);
 }
}

The import declaration for package java.util is included for accessing the class Calen-
dar, which we need to obtain the hour, minute, and second components of a calendar in-
stance. As before, we store this file in subdirectory Timer.

The corresponding server application can be copied almost entirely from Section 8.2; we on-
ly make minor changes to class names in the constructor and the main() method and store
the file in the Server directory, as usual:

// TServer.java

import Timer.*;
import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.System.*;

public class TServer {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private void putRef(org.omg.CORBA.Object obj,
 String refFile) {
 ... as above in Section 8.2
 }
 public TServer(String[] args, String refFile) {
 try {
 initializeORB(args);
 TimeServerImpl t_impl = new TimeServerImpl();
 TimeServer t = t_impl._this(orb);
 putRef(t, refFile);
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "TimeServer.ref";
 new TServer(args, refFile);
 }
}

 9.1 Attributes vs. Operations 163

The client application is just as simple. We can copy most of its code from the client in Sec-
tion 8.3 and thus complete the first example.

// TClient.java

import Timer.*;
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import static java.lang.System.*;

public class TClient {
 private ORB orb;
 private void initializeORB(String[] args) {
 ... as above in Section 8.3
 }
 private org.omg.CORBA.Object getRef(String refFile) {
 ... as above in Section 8.3
 }
 public TClient(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 TimeServer t = TimeServerHelper.narrow(obj);
 int h = t.hours(), m = t.minutes(), s = t.seconds();
 out.println("Time on Server: " + h
 + ((m < 10)? ":0": ":") + m
 + ((s < 10)? ":0": ":") + s);
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "TimeServer.ref";
 new TClient(args, refFile);
 }
}

An alternative to the first interface specification would be the second version below, which,
according to our file system structure, goes to the \Examples\TimeServer\2 directory
on the server host:

// TimeServer.idl
// Version 2

module Timer
{
 interface TimeServer
 {
 unsigned long hours();
 unsigned long minutes();

164 9 Alternatives for Designing IDL Interfaces

 unsigned long seconds();
 };
};

Even though the interface definitions differ, their Java mapping is exactly the same. There-
fore, we can reuse the above-described implementations of servant, server application, as
well as client application entirely. These sources, TimeServerImpl.java, TServ-
er.java, and TClient.java, should be stored in directories named in correspondence
with the first version; in the remainder of this chapter, we do not go into more detail regard-
ing the directory structure.

The two first alternatives are rather inefficient since they both invoke three remote methods,
hours(), minutes(), and seconds(), in order to determine the server’s time. These
invocations should be combined into one single invocation. There are at least three different
approaches that return the hours, minutes, and seconds with one single method call.

9.2 Returning Results From an Operation

Our third TimeServer version achieves this by defining an operation get_time() with
three out parameters:

// TimeServer.idl
// Version 3

module Timer
{
 interface TimeServer
 {
 void get_time(
 out unsigned long hours,
 out unsigned long minutes,
 out unsigned long seconds);
 };
};

A look at Section 5.17 for the mapping of out parameters and inspection of the operations
interface shows us that, now, a method with three IntHolder parameters has to be imple-
mented. Holder classes for basic types, such as int, are already available in package
org.omg.CORBA (see Section 5.4). They are all defined following the same pattern, pro-
viding a public instance variable value of the type they hold, a public default con-
structor, and a public one-argument constructor that initializes the value.

The Java implementation of the operations interface can, therefore, look as follows:

// TimeServerImpl.java

package Timer;

import static java.util.Calendar.*;
import org.omg.CORBA.*;

 9.2 Returning Results From an Operation 165

public class TimeServerImpl extends TimeServerPOA {
 public void get_time(IntHolder hours,
 IntHolder minutes, IntHolder seconds) {
 hours.value = getInstance().get(HOUR_OF_DAY);
 minutes.value = getInstance().get(MINUTE);
 seconds.value = getInstance().get(SECOND);
 }
}

We construct a Calendar object, extract the desired current time values from it, and set the
holder values of the IntHolder parameters correspondingly.

There are no revisions necessary to the server application; its code can be once again reused
entirely. The main difference to alternatives one and two is that, now, some changes are to be
made to the code of the client application. Clients invoke the method get_time() and, be-
fore the remote invocation can be executed, a client has to provide an instance for each out
parameter (see Section 5.17). The corresponding Java code for the TClient’s constructor is
therefore

IntHolder hours = new IntHolder(),
 minutes = new IntHolder(), seconds = new IntHolder();
t.get_time(hours, minutes, seconds);
out.println("Time on Server: " + hours.value
 + ((minutes.value < 10)? ":0": ":") + minutes.value
 + ((seconds.value < 10)? ":0": ":") + seconds.value);

Since hours, minutes, and seconds are out parameters, they obtain suitable values
through the server and default initialization on the client side, through the default construc-
tor, is sufficient.

Alternative four provides a similar solution with a single remote invocation, this time falling
back on a constructed type Time, a structure with the elements hours, minutes, and se-
conds. Operation get_time() returns a Time instance. The IDL definition looks as fol-
lows:

// TimeServer.idl
// Version 4

module Timer
{
 interface TimeServer
 {
 struct Time {
 unsigned long hours;
 unsigned long minutes;
 unsigned long seconds;
 };
 Time get_time();
 };
};

166 9 Alternatives for Designing IDL Interfaces

The servant implementation for the above interface could be realized like this:

// TimeServerImpl.java

package Timer;

import Timer.TimeServerPackage.*;
import static java.util.Calendar.*;

public class TimeServerImpl extends TimeServerPOA {
 public Time get_time() {
 return new Time(getInstance().get(HOUR_OF_DAY),
 getInstance().get(MINUTE),
 getInstance().get(SECOND));
 }
}

The first obvious difference is that, now, a new package, TimeServerPackage, has to be
imported. This is the package the IDL compiler generates below the module package Timer
to store the Java class Time to which the structure is mapped. The class declares three pub-
lic int instance variables, hours, minutes, and seconds, a default constructor, and a
constructor with three int parameters (see Section 5.9 and also inspect Timer\TimeSer-
verPackage\Time.java). We use the IDL compiler-generated constructor to initialize a
new Time instance with the current time values and immediately return that object as a re-
sult of the invocation of method get_time(). The server application itself can, again, re-
main unchanged.

The class Time is also needed on the client side. Therefore, a corresponding import decla-
ration must be included at the beginning of TClient.java:

import Timer.TimeServerPackage.*;

And in the client’s constructor, we invoke get_time() as follows:

Time hms = t.get_time();
out.println("Time on Server: " + hms.hours
 + ((hms.minutes < 10)? ":0": ":") + hms.minutes
 + ((hms.seconds < 10)? ":0": ":") + hms.seconds);

The rest of the client application can be copied; as above, the variable t holds a reference to
the TimeServer.

As a last alternative, we change the interface such that, instead of returning the Time struc-
ture as usual as the invocation’s result, we provide it in the form of an out parameter. In that
case, we define the interface specification below:

// TimeServer.idl
// Version 5

module Timer
{
 interface TimeServer
 {

 9.2 Returning Results From an Operation 167

 struct Time {
 unsigned long hours;
 unsigned long minutes;
 unsigned long seconds;
 };
 void get_time(out Time hms);
 };
};

In Section 5.17, we discussed that out parameters of user-defined types are mapped to their
corresponding holder classes. Therefore, in the TimeServerOperations interface, we
find the following method:

void get_time(Timer.TimeServerPackage.TimeHolder hms);

As in our example’s version four, the TimeHolder is generated in the TimeServer-
Package; however, now we have to use it to return the current time back to the client. The
structure of holder classes was explained in Section 5.4, one might also want to read Tim-
er\TimeServerPackage\TimeHolder.java to recall how the class declares a pu-
blic instance variable value of type Time. When writing the servant, one should recall
(Section 5.17) that an object for an out parameter must be created and is owned by the re-
ceiver of the call. An implementation of the interface can, therefore, have the form

// TimeServerImpl.java

package Timer;

import Timer.TimeServerPackage.*;
import static java.util.Calendar.*;

public class TimeServerImpl extends TimeServerPOA {
 public void get_time(TimeHolder hms) {
 Time tim = new Time(getInstance().get(HOUR_OF_DAY),
 getInstance().get(MINUTE),
 getInstance().get(SECOND));
 hms.value = tim;
 }
}

We create a Time object exactly as in alternative four. But, now, we do not pass it to the cli-
ent with a return statement; instead, we insert it into the TimeHolder by setting its value.

The code of the server application can be reused entirely. However, due to the change in the
specification of method get_time(), the client application has to be adapted. First, an im-
port statement for the Timer.TimeServerPackage is needed. And second, as for alter-
native three, the client has to provide an instance for the out parameter. Since the server cre-
ates the actual value of type Time, we can simply call the TimeHolder’s default con-
structor

TimeHolder hms = new TimeHolder();
t.get_time(hms);
Time tim = hms.value;

168 9 Alternatives for Designing IDL Interfaces

out.println("Time on Server: " + tim.hours
 + ((tim.minutes < 10)? ":0": ":") + tim.minutes
 + ((tim.seconds < 10)? ":0": ":") + tim.seconds);

After completion of the call, we access the hours, the minutes, and the seconds via the
value of the out parameter.

As we saw in this chapter, designing IDL interfaces often involves decisions for or against
different design alternatives. The developer should be aware of the consequences that a par-
ticular approach might imply, e.g., with respect to network communication overhead, main-
tainability, and other relevant aspects. After carefully trading off these consequences, the de-
veloper is then able to choose the best solution with respect to the requirements at hand.

9.3 Exercises

1. Implement a server with an operation x1x2() that passes two doubles p and q and
calculates and returns the two results

q
pp

x
42

2

1 , q
pp

x
42

2

2

i.e., the two roots of the equation 02 qpxx .

For the DoubleHolder class, see Section 5.4; for the creation and “ownership” of in,
out, and inout parameters, see Section 5.17; for Pair and PairHolder, read the
files generated from the IDL compiler.

a) Use the following interface definition:

interface Roots
{
 exception Complex { };
 void x1x2(in double p, in double q,
 out double x1, out double x2) raises(Complex);
};

b) Use the following interface definition:

interface Roots
{
 exception Complex { };
 struct Pair
 {
 double a;
 double b;
 };
 void x1x2(in Pair pq, out Pair roots)
 raises(Complex);
};

 9.3 Exercises 169

c) Use the following interface definition:

interface Roots
{
 exception Complex { };
 struct Pair
 {
 double a;
 double b;
 };
 void x1x2(inout Pair pqroots) raises(Complex);
};

2. The method System.currentTimeMillis() returns the current time at the host as
a long. For each of the five alternatives discussed above, get the time on the server host
1,000 times (5,000 times or 10,000 times, etc.) and use currentTimeMillis() to
compare the respective run-times.

3. Implement a sixth TimeServer version where get_time() returns a sequence with
three unsigned longs.

4. Implement a seventh TimeServer version where get_time() returns an array with
three unsigned longs.

5. Given the following IDL interfaces, each containing an operation compute() with an
in parameter of different types, compile the interfaces and have a look at the signatures
of the resulting Java methods. Which conclusion(s) with respect to the design of the IDL
interfaces can be drawn from the findings?

interface ArrXmpl
{
 typedef long larr[10];
 long compute(in larr l);
};
interface BSeqXmpl
{
 typedef sequence<long,50> lseq;
 long compute(in lseq l);
};
interface UnBSeqXmpl
{
 typedef sequence<long> luseq;
 long compute(in luseq l);
};

10 Inheritance and Polymorphism

The most powerful object-oriented concepts known to those programming in object-oriented
languages are inheritance and the related possibility of invoking operations or methods po-
lymorphically. For example, in Java, classes and interfaces can be organized in an inheri-
tance hierarchy and inherit members from their supertypes. While in Java a class can have at
most one direct superclass, interfaces may have an arbitrary number of superinterfaces.
Therefore, in Java, multiple inheritance is only permitted on the interface level. In addition to
the possibility of overloading methods, i.e., declaring methods with the same name and same
return type but different signatures, in Java, it is allowed to override methods inherited from
superclasses or superinterfaces. Recall that a method overrides a method inherited from a su-
perclass when it is declared with a new method body but the same signature and return type.
References to objects of such a class can now be managed through references of the super-
class type by implicitly casting up the type hierarchy. Calling an overridden method with a
reference of the superclass type now results in executing the method body belonging to the
class with which the object was originally constructed. Method invocations with the same
name, therefore, can result in different kinds of behavior, depending on the type of the refer-
enced object; they are polymorphic.

If we examine the realization of the concepts of inheritance and polymorphism in CORBA,
we have to bear in mind that, there, we find an even stricter separation of interface and im-
plementation. On the IDL level, we never deal with implementation aspects. These are real-
ized through the mapping to a programming language that is not necessarily object-oriented
and whose concepts are not influenced by the CORBA standard itself. In order to guarantee
the object-oriented approach, CORBA embeds the concepts of inheritance and polymor-
phism already in IDL. Similar to the rules for Java interfaces, multiple inheritance is allowed
for IDL interfaces; therefore, an IDL interface can have several direct superinterfaces. How-
ever, in contrast to Java, it is not allowed in IDL to overload operations nor to override them
in a subinterface. This fact could support the assumption that, in CORBA, polymorphism
cannot be realized, an assumption that is not true as we see later. All IDL operations support
late binding, irrespective of the concrete programming language chosen for their implemen-
tation. Depending on the type of the referenced object, the CORBA runtime selects the corre-
sponding implementation for the invoked operation. And, since the same IDL operation can
be provided with a new implementation on each level of the inheritance hierarchy, nothing
gets in the way of polymorphic behavior in CORBA.

Let us begin with a simple example that we realize in two variants in order to illustrate in-
heritance on the interface and implementation levels. At the end of the chapter, we also prac-
tically test an example with polymorphic method calls.

172 10 Inheritance and Polymorphism

10.1 IDL Definition of DateTimeServer

For the first example, which is first implemented with the inheritance approach and later
with the delegation approach, we come back to the TimeServer example from Chapter 9.
Assume that, in addition to the simple TimeServer, which provides the current time in a
structure Time with members holding hours, minutes, and seconds, we now want to imple-
ment a more specialized DateTimeServer, which can additionally return the current date
in a structure DateTime holding day, month, and year in addition to the current time. In-
spect the following IDL definition of the module Timer.

// DateTimeServer.idl

module Timer
{
 interface TimeServer
 {
 struct Time {
 unsigned long hours;
 unsigned long minutes;
 unsigned long seconds;
 };
 Time get_time();
 };
 interface DateTimeServer : TimeServer
 {
 struct DateTime {
 unsigned long day;
 unsigned long month;
 unsigned long year;
 Time hms;
 };
 DateTime get_date_time();
 };
};

The module Timer contains the interface TimeServer, known from Section 9.2, in ver-
sion 4. The interface DateTimeServer is new; it extends the TimeServer interface
and, thus, inherits the structure Time and the method get_time() from its superinterface
TimeServer. These elements need not be redefined. The structure DateTime and the op-
eration get_date_time(), which returns a current DateTime instance, are new. In ad-
dition to the three unsigned long values for day, month, and year, DateTime contains
a member of the inherited type Time to be able to store the current time. Here, interface in-
heritance is used to avoid redundancies in the IDL specification. Inheritance also enables us
to treat objects of the subinterface type (here, DateTimeServer) like objects of the super-
interface type (here, TimeServer); we demonstrate this below.

On the server host and the client hosts, one should now create directories \Examples\In-
heritance and three subdirectories, 1, 2, and 3, where the following three examples can
be stored. As before, create the subdirectories YourORB\Client on the client hosts and
YourORB\Server on the server host. Store the file DateTimeServer.idl on each
host in \Examples\Inheritance\1 and in \Examples\Inheritance\2. (We use

 10.2 Implementing the Inheritance Approach 173

the same IDL specification for the first two examples.) After setting the environment vari-
ables, one can now invoke the IDL compiler in the respective Server or Client subdirec-
tory.

The IDL compiler creates a subdirectory and a Java package Timer for the module Timer,
where the usual files for the two interfaces TimeServer and DateTimeServer are
stored. For the two structures Time and DateTime, two Java packages, TimeServer-
Package and DateTimeServerPackage, and the corresponding subdirectories of the
Timer directory are generated. The Java classes Time and DateTime, as well as the ap-
propriate helper and holder classes, are created and stored there.

10.2 Implementing the Inheritance Approach

We now examine how interface inheritance on the IDL level influences the implementation
of the interfaces. To do that, we follow the inheritance approach first and then implement the
delegation approach consecutively.

10.2.1 Implementing TimeServer

We start with the TimeServer’s implementation and reuse the code from version 4, dis-
cussed in Section 9.2, entirely:

// TimeServerImpl.java

package Timer;

import Timer.TimeServerPackage.*;
import static java.util.Calendar.*;

public class TimeServerImpl extends TimeServerPOA {
 public Time get_time() {
 return new Time(getInstance().get(HOUR_OF_DAY),
 getInstance().get(MINUTE),
 getInstance().get(SECOND));
 }
}

As before, store the file TimeServerImpl.java in the directory \Examples\Inhe-
ritance\1\YourORB\Server\Timer.

10.2.2 Implementing DateTimeServer

Analogously, implementing the inheritance approach, we declare the DateTimeServer’s
implementation class as a subclass of the DateTimeServerPOA class as follows:

// DateTimeServerImpl.java

package Timer;

174 10 Inheritance and Polymorphism

import Timer.DateTimeServerPackage.*;
import Timer.TimeServerPackage.*;
import static java.util.Calendar.*;

public class DateTimeServerImpl
 extends DateTimeServerPOA {
 public Time get_time() {
 return new Time(getInstance().get(HOUR_OF_DAY),
 getInstance().get(MINUTE),
 getInstance().get(SECOND));
 }
 public DateTime get_date_time() {
 return new DateTime(getInstance().get(DAY_OF_MONTH),
 getInstance().get(MONTH) + 1,
 getInstance().get(YEAR),
 get_time());
 }
}

Method get_time() is implemented with exactly the same body as in the TimeServer-
Impl class. This shows that IDL inheritance resulted in duplicating the code of the Java im-
plementation of the inherited method. On the code level, we did not gain any benefit from the
inheritance principle. (See Exercise 1 for a way that goal can, nevertheless, be reached.) In
that way, CORBA inheritance can be implemented with non-object-oriented programming
languages that do not know the inheritance concept. It can also be seen that the method
get_time() could have been re-declared with an arbitrary new method body in class
DateTimeServerImpl. The implementation of the new method get_date_time() is
straightforward; once again, we fall back on the functionality of the Calendar class.

The file DateTimeServerImpl.java also goes to the directory \Examples\Inher-
itance\1\YourORB\Server\Timer.

10.2.3 Implementing the Server Application

The server-side application of the inheritance example could be implemented as follows:

// TServer.java

import Timer.*;
import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.System.*;

public class TServer {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private void putRef(org.omg.CORBA.Object obj,

 10.2 Implementing the Inheritance Approach 175

 ... as above in Section 8.2
 }
 public TServer(String[] args, String refFile) {
 if (args.length < 1) {
 out.println("Start with\n\tjava/jrun TServer Time"
 + "\nor\n\tjava/jrun TServer DateTime");
 return;
 }
 try {
 initializeORB(args);
 if (args[0].equalsIgnoreCase("Time"))
 putRef(new TimeServerImpl()._this(orb), refFile);
 else
 putRef(new DateTimeServerImpl()._this(orb),
 refFile);
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "TimeServer.ref";
 new TServer(args, refFile);
 }
}

Apart from minor modifications in the TServer() constructor, this implementation is
identical to the one used above in Section 9.1. In the constructor, the method putRef() is
called to write the reference to a newly created and activated TimeServerImpl or Da-
teTimeServerImpl object to the file TimeServer.ref; the object’s type is deter-
mined by the command-line argument. The rest of the constructor, with the ORB’s initializa-
tion, the POAManager’s activation, and the passing of the control flow to the ORB, should
now be customary.

After storing the file TServer.java on the server host in \Examples\Inheritan-
ce\1\YourORB\Server, one can now translate and start the server. Finally, one should
not forget to transfer the file TimeServer.ref containing the server IOR to the client
hosts.

10.2.4 Implementing the Client Application

At last, we implement the client application with the Java code given below:

// TClient.java

import Timer.*;
import Timer.TimeServerPackage.*;
import Timer.DateTimeServerPackage.*;
import java.io.*;
import java.util.*;

176 10 Inheritance and Polymorphism

import org.omg.CORBA.*;
import static java.lang.System.*;

public class TClient {
 private ORB orb;
 private void initializeORB(String[] args) {
 ... as above in Section 8.3
 }
 private org.omg.CORBA.Object getRef(String refFile) {
 ... as above in Section 8.3
 }
 public TClient(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 TimeServer t = null;
 DateTimeServer dt = null;
 try {
 t = TimeServerHelper.narrow(obj);
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 }
 Time hms = t.get_time();
 out.println("Time on Server: " + hms.hours
 + ((hms.minutes < 10)? ":0": ":") + hms.minutes
 + ((hms.seconds < 10)? ":0": ":") + hms.seconds);
 try {
 dt = DateTimeServerHelper.narrow(t);
 } catch (BAD_PARAM ex) { }
 if (dt != null) {
 DateTime dmy = dt.get_date_time();
 out.println("Date on Server: "
 + ((dmy.day < 10)? "0": "")+ dmy.day
 + ((dmy.month < 10)? ".0": ".") + dmy.month
 + "." + dmy.year);
 }
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "TimeServer.ref";
 new TClient(args, refFile);
 }
}

While methods main() as well as initializeORB() and getRef() are coded in the
familiar way, the constructor TClient() deserves a further look. As usual, the ORB is ini-
tialized and the server object’s reference string is read. Since there are two options to start
the server, the client has no information on the actual type of the server object; TimeSer-
ver or DateTimeServer, at that time.

 10.3 Implementing the Example with the Delegation Approach 177

At this point, it might be useful to recapitulate how the narrowing of CORBA object refer-
ences is carried through (see also Section 5.5 on helper classes.) From the previous exam-
ples, it is known that getRef() returns the IOR read from a file as a reference to the ge-
neric supertype org.omg.CORBA.Object. This type cast up the inheritance hierarchy is
always unproblematic since the concrete subtype has at least all the properties of the super-
type. To come back to our example, a DateTimeServer object is also a TimeServer
object. Casts in the other direction, the narrowing of references, are only appropriate when
the referenced object’s type is indeed the subtype since potential additional properties (at-
tributes or methods) are expected that the supertype does not provide. A TimeServer ob-
ject is not by any means a DateTimeServer object, which can also determine the date.
Therefore, to be able to use the read object reference for invocations on the remote server ob-
ject, this reference has to be narrowed to the correct type, as in the previous examples. To
provide a language-spanning mechanism for that task, the CORBA standard defines the IDL
operation narrow() for a type’s helper class; in Java, this operation is mapped to a method
with the same name. In order to guarantee type safety, the ORB’s difficulty is that it has to
decide whether the narrowing is appropriate or not; for that decision, it needs information on
the type hierarchy. The ORB obtains this information automatically, either locally from the
current stub code or, if this is not available, dynamically by a remote call. The latter should
definitely be avoided since it slows down the client and, in the worst case, could even pro-
duce a deadlock. Should narrowing of a type be inadmissible, the method narrow()
throws a system exception of type org.omg.CORBA.BAD_PARAM.

Against this background, we can now take a closer look at the next statements in the TCli-
ent constructor. Due to the design of the server application, the reference returned by
getRef() is either of type TimeServer or of type DateTimeServer. Since the latter
is a subtype of the TimeServer, we can always try a cast to the TimeServer type by
means of TimeServerHelper.narrow(). Should this attempt fail, the reference does
not have one of the two TimeServer types, a BAD_PARAM exception is thrown and the
program is terminated in the exception handler. Otherwise, irrespective of its actual type, we
treat the object as a TimeServer, call get_time(), and print the time values. Subse-
quently, we try a second cast to the type DateTimeServer. If this succeeds, the object is
truly of that type and we can invoke the DateTimeServer’s method get_date_ti-
me() and print the date. Otherwise, if the object was “only” of type TimeServer and the
narrowing fails, we can simply ignore the exception thrown.

The file TClient.java can now be stored in the directory \Examples\Inherit-
ance\1\YourORB\Client on one’s client hosts and the complete application can be
translated and tested as accustomed. The client is also used in unrevised form for the next,
second, variation of the inheritance example and TClient.java should also be stored in
one’s client hosts’ directory \Examples\Inheritance\2\YourORB\Client.

10.3 Implementing the Example with the Delegation
Approach

For a second variation of the example, we now rely on the delegation approach. Here, it is
noticeable that, also on the programming language level, we can make good use of the inheri-

178 10 Inheritance and Polymorphism

tance principle since Java, as an object-oriented language, provides the opportunity to do so.
The above-described first variation was characterized by inheritance on the IDL level, cou-
pled with code duplication on the implementation level. Duplicated code is hard to maintain
and not elegant from an object-oriented point of view; but, it at least offers some perform-
ance gain with respect to the method invocations since the additional level of indirection that
the delegation approach brings about is not needed.

We use the same IDL specification DateTimeServer.idl as a starting point. It should
already be stored in the correct directories for the second example and may now be trans-
lated. Since the delegation approach is now followed, the IDL compiler has to be invoked
such that, on the server host, tie classes are generated as well.

Next to the DateTimeServer.idl’s IDL specification, the client application, file
TClient.java, can also be reused without any changes.

10.3.1 Implementing TimeServer

It is the characteristic of the delegation approach to implement the CORBA objects specified
in IDL by means of the delegate classes. This way to proceed should already be known so
further details on the TimeServerDelegate’s Java code can be spared:

// TimeServerDelegate.java

package Timer;

import Timer.TimeServerPackage.*;
import static java.util.Calendar.*;

public class TimeServerDelegate
 implements TimeServerOperations {
 public Time get_time() {
 return new Time(getInstance().get(HOUR_OF_DAY),
 getInstance().get(MINUTE),
 getInstance().get(SECOND));
 }
}

Store this file in the directory \Examples\Inheritance\2\YourORB\Server\Ti-
mer.

10.3.2 Implementing DateTimeServer

The implementation of the TimeServerDelegate’s subtype DateTimeServerDe-
legate is given below:

// DateTimeServerDelegate.java

package Timer;

import Timer.DateTimeServerPackage.*;
import Timer.TimeServerPackage.*;

 10.3 Implementing the Example with the Delegation Approach 179

import static java.util.Calendar.*;

public class DateTimeServerDelegate
 extends TimeServerDelegate
 implements DateTimeServerOperations {
 public DateTime get_date_time() {
 return new DateTime(getInstance().get(DAY_OF_MONTH),
 getInstance().get(MONTH) + 1,
 getInstance().get(YEAR),
 get_time());
 }
}

The essential advantage of the delegation approach, as opposed to the inheritance approach,
is that, now, the implementation class is not forced to subclass the corresponding POA class
and, therefore, does not use up Java’s single possibility of declaring a subclass. Instead, here,
only the operations interface is implemented so that the delegate class can, in principle, in-
herit from any other Java class. We exploit this possibility by declaring DateTimeSer-
verDelegate as a subclass of TimeServerDelegate and, thus, make use of all ad-
vantages of implementation inheritance so that code duplication, especially, is avoided.

The file DateTimeServerDelegate.java should be stored in the same directory as
TimeServerDelegate.java.

10.3.3 Modifying the Server Application

The implementation of the server application can also be kept almost entirely from the first
example. The only modification that the file TServer.java needs concerns the construc-
tion of the server objects once the ORB is initialized. The if statement

if (args[0].equalsIgnoreCase("Time"))
 putRef(new TimeServerImpl()._this(orb), refFile);
else
 putRef(new DateTimeServerImpl()._this(orb), refFile);

in the constructor now has to be replaced by the construction

if (args[0].equalsIgnoreCase("Time"))
 putRef(new TimeServerPOATie(
 new TimeServerDelegate())._this(orb), refFile);
else
 putRef(new DateTimeServerPOATie(
 new DateTimeServerDelegate())._this(orb), refFile);

One can store this file, as usual, in the Server directory, compile it, and start it with the de-
sired command-line argument. After copying the object reference to a client host, one can
start the client and test the complete application.

180 10 Inheritance and Polymorphism

10.4 An Example for Polymorphism

We now come back to the subject of polymorphic method calls. In order to concentrate on
the essentials, we discuss a very simple, abstract example that is nevertheless well-suited to
practically demonstrate the possibilities CORBA and Java offer.

Consider the following IDL specification of a module XYZ with interfaces X, Y, and Z:

// XYZ.idl

module XYZ
{
 interface X
 {
 void m();
 void l();
 };
 interface Y : X
 {
 };
 interface Z : Y
 {
 };
};

These interfaces are arranged in a three-level inheritance hierarchy, where Z inherits from Y
and Y inherits from X. In X, two operations, m() and l(), with empty parameter lists and
void return types, are defined. As repeatedly mentioned, IDL allows neither overloading nor
overriding of operations. And, since the IDL level is still completely implementation-
independent, it cannot be indicated whether one of the subtypes of X should provide another
implementation of one of X’s operations or not. Let us assume that operation m() shall have
its own specific implementation on each hierarchy level while, on the other hand, the imple-
mentation of l() shall be identical for all three types.

Figure 17 clearly demonstrates the IDL interfaces of module XYZ once again in UML nota-
tion. Store and compile the IDL file on server and client hosts as usual and take care to gen-
erate the tie classes necessary for the delegation approach.

On the server host, we now implement XDelegate, YDelegate, and ZDelegate ac-
cording to the delegation approach; we begin with the file XDelegate.java:

// XDelegate.java

package XYZ;

public class XDelegate implements XOperations {
 public void m() { System.out.println("X::m()"); }
 public void l() { System.out.println("X::l()"); }
}

 10.4 An Example for Polymorphism 181

The only purpose of the two methods m() and l() is to write their names to the console so
that we can later understand which concrete implementation is executed when they are called
by a client.

The implementation class for the YDelegate follows; it is declared as a subclass of class
XDelegate:

// YDelegate.java

package XYZ;

public class YDelegate extends XDelegate
 implements YOperations {
 public void m() { System.out.println("Y::m()"); }
}

Overriding a method’s implementation on the Java level does not pose any problems. There-
fore, we declare a new method body for YDelegate’s method m() while not providing a
new implementation for l(), thus, leaving it unrevised.

The implementation of the ZDelegate class follows the same scheme, “overriding” m()
while simply inheriting l().

// ZDelegate.java

package XYZ;

public class ZDelegate extends Ydelegate
 implements ZOperations {
 public void m() { System.out.println("Z::m()"); }
}

<<IDL interface>>
X

m()
l()

<<IDL interface>>
Y

<<IDL interface>>
Z

Figure 17: IDL Level Inheritance Hierarchy

182 10 Inheritance and Polymorphism

Store these files on the server host in the subdirectory XYZ of one’s Server directory for
the third example.

Now, we turn to the server application.

// DelegationServer.java

import XYZ.*;
import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.System.*;

public class DelegationServer {
 public static void main(String args[]) {
 ORB orb = null;
 try {
 Properties props = getProperties();
 orb = ORB.init(args, props);
 org.omg.CORBA.Object obj;
 POA rootPOA;
 FileOutputStream file =
 new FileOutputStream("XYZ.ref");
 PrintWriter writer = new PrintWriter(file);
 obj = orb.resolve_initial_references("RootPOA");
 rootPOA = POAHelper.narrow(obj);
 String ref;
 ref = orb.object_to_string(
 new XPOATie(new XDelegate())._this(orb));
 writer.println(ref);
 ref = orb.object_to_string(
 new YPOATie(new YDelegate())._this(orb));
 writer.println(ref);
 ref = orb.object_to_string(
 new ZPOATie(new ZDelegate())._this(orb));
 writer.println(ref);
 writer.flush();
 file.close();
 rootPOA.the_POAManager().activate();
 } catch(Exception ex) {
 out.println("Exception:" + ex);
 exit(5);
 }
 out.println("Server started. Stop: Ctrl-C");
 orb.run();
 }
}

The main difference compared to our previous examples is that, now, three server objects of
types X, Y, and Z are created and stored via their stringified references in the file XYZ.ref.
In order to keep the code very short, we do not factor out the code previously grouped in the
methods initializeORB() and getRef(). The remaining statements in the main()
method should all be familiar.

 10.4 An Example for Polymorphism 183

One can store and compile the server application according to the usual conventions.

As the last element of the distributed test application, we implement the client application;
with its help, we intend to demonstrate how polymorphic method calls can be performed.

// Client.java

import XYZ.*;
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import static java.lang.System.*;

public class Client {
 public static void main(String[] args) {
 try {
 Properties props = getProperties();
 ORB orb = ORB.init(args, props);
 org.omg.CORBA.Object obj;
 Scanner reader = new Scanner(new File("XYZ.ref"));
 String ref;
 X[] x = new X[3];
 for (int i = 0; i < x.length; i++) {
 ref = reader.nextLine();
 obj = orb.string_to_object(ref);
 x[i] = XHelper.narrow(obj);
 }
 reader.close();
 for (int i = 0; i < x.length; i++) {
 x[i].m();
 x[i].l();
 }
 } catch(Exception ex) {
 out.println("System error!");
 exit(1);
 }
 }
}

Again, the application is kept very simple and short. We read the three object references from
the file XYZ.ref and narrow them to the type X, as discussed in Section 10.2.4. The results
are stored in an array of type X[] with length three. And, finally, we call m() and, subse-
quently, l() for each element of this array. On the console of the server host, the following
output is printed:

X::m()
X::l()
Y::m()
X::l()
Z::m()
X::l()

It can be seen that, depending on the actual type of the referenced server-side object, the cor-
rect implementation of methods m() and l() is executed, respectively. While the calls of

184 10 Inheritance and Polymorphism

m() are polymorphic because, on the code level, m() was newly implemented each time
(and in Java actually overridden), the calls of l() always yield the same result since l()
was only implemented in the XDelegate class and was simply inherited in its original
form in the subclasses.

The inheritance and implementation relationships between the classes and the interfaces of
this simple example are relatively complex. Part of them is demonstrated for the Java level in
the UML diagram shown in Figure 18. Note that, when portraying the Java classes YDele-
gate and ZDelegate on the left side of the figure, overriding of method m() was indi-
cated by repeatedly displaying m(), which was not possible on IDL level; see Figure 17.

10.5 Exercises

1. One disadvantage of the first example in this chapter is its duplication of Java code. How
could this code duplication be prevented and nevertheless be profited from inheritance
between Java classes without falling back on the delegation approach? Implement and
test your solution and discuss advantages and disadvantages of both approaches from a
performance-oriented view.
Hint: Write a very lightweight implementation that mimics the delegation approach with-
out the overhead of the IDL compiler-generated classes.

<<interface>>
XOperations

<<interface>>
YOperations

<<interface>>
ZOperations

XPOA XPOATie

<<interface>>
X

XDelegate

YDelegate

ZDelegate

YPOA YPOATie

ZPOA ZPOATie

<<interface>>
Y

<<interface>>
Z

m()
l()

m()
l()

m()

m()

Figure 18: Partial Overview of “extends” and “implements” Relationships Between
Java Classes and Interfaces Involved in the Example

 10.5 Exercises 185

2. Starting from the original Counter in the version discussed in Chapter 7, implement an
InvCounter with the following IDL interface:

interface InvCounter : Counter
{
 void invert();
};

It is the purpose of operation invert() to change the sign of the current Counter
value. Write a test application that implements the delegation approach.

11 Implementing Distributed
Callbacks

In the preceding chapters, we discussed examples that all implemented a rather strict alloca-
tion of the server and the client application roles. Communication was one-sided since only
the clients invoked operations on the server objects. There are occasions, however, when re-
quests on the design of the desired distributed system make it necessary that clients and serv-
ers change their roles, temporarily.

A typical situation in which a client application takes over server functionality for a dedi-
cated period of time is one where the client is waiting for specific events that might occur at
a server-side object and that require suitable reactions. On the other hand, a server might
need to contact its clients to invoke certain update operations on them. In principle, a client
can send a request to the server in regular intervals in order to determine whether an event
that is of interest has occurred or not. This “Polling” or “Busy Waiting” technique, however,
only unnecessarily consumes computing time on the client host and, for a larger number of
clients, also increases load on the server host as well as network traffic. A solution to that
problem is implementing the Callback technique ([MM97], pp.83), where the server itself
informs the client about the occurrence of events.

To realize distributed callbacks and to enable the intended role change, the two following
hints should be taken into consideration:

The client application must provide a CORBA object, i.e., an IDL interface has to be
specified and the corresponding servant has to be implemented for the client, so that
the client as well can be invoked via the CORBA infrastructure and is enabled to re-
ceive and process the server’s callback.

The server object from which the client expects to be called back must offer an opera-
tion for registering the object reference of the client object so that the receiver of the
callback can be communicated to the server. This operation must be defined in the
server’s IDL interface and has to be implemented suitably in the servant.

In the following, we describe a simple example that demonstrates the employment of a call-
back. It is based on our initial Counter example, which is unsatisfactory because the value
displayed in the client application would temporarily be outdated when several clients are ac-
tive. The command window could, for example, look like

Counter value: 3
Action (+/-/e)? +
Counter value: 6
Action (+/-/e)?

because during the time the client application waited for the user’s input, executed the
inc() operation, and accessed the new value, the actions of other clients finally yielded a

188 11 Implementing Distributed Callbacks

value of six. We now implement a client immediately informed by a callback whenever an
operation changes the Counter object’s value. The callback then displays the current value
on the client’s command line.

11.1 Defining IDL Interfaces

As usual, we begin with the IDL definitions. We reuse the existing Counter interface from
Chapter 7 and first add two operations add() and remove(), which a client can invoke to
be registered with the server for receiving callbacks. Both operations have to be invoked with
an argument referencing a CounterClient, which stands for the client to be called back.
This implies that we also have to define an interface for the client application, the Coun-
terClient interface, to guarantee it also implements a CORBA object. The operation in-
voked during a callback of the server object is the operation update(); the current
Counter value is passed to it when invoked.

We combine both IDL interfaces in the module CBCount as follows:

// CBCounter.idl

module CBCount
{
 interface CounterClient
 {
 void update(in long value);
 };
 interface Counter
 {
 readonly attribute long value;
 void inc();
 void dec();
 void add(in CounterClient cc);
 void remove(in CounterClient cc);
 };
};

If one adheres to the file structure suggested for server host (Figure 11) and client host
(Figure 14), one saves that module definition in a file CBCounter.idl in the directory
\Examples\Callback.

11.2 Implementing the Counter Servant

We begin with server-side development, execute the appropriate batch file to set the envi-
ronment variables, and translate module CBCount as usual by invoking the IDL compiler in
the Server subdirectory on the server host. To implement the Counter interface, we em-
ploy the inheritance approach and, possibly after inspecting the operations interface Coun-
terOperations.java, provide the following implementation:

 11.2 Implementing the Counter Servant 189

// CounterImpl.java

package CBCount;

import java.util.*;

public class CounterImpl extends CounterPOA {
 private int count;
 private List<CounterClient> clients =
 new ArrayList<CounterClient>();
 public CounterImpl() {
 count = 0;
 }
 public void inc() {
 count++;
 _notify();
 }
 public void dec() {
 count--;
 _notify();
 }
 public int value() {
 return count;
 }
 public synchronized void add(CounterClient cc) {
 clients.add(cc);
 }
 public synchronized void remove(CounterClient cc) {
 clients.remove(cc);
 }
 private synchronized void _notify() {
 for (CounterClient cc: clients) {
 if (cc != null)
 try {
 cc.update(count);
 } catch (Exception ign) { }
 }
 }
}

There are some notable differences when comparing this implementation with our first, sim-
ple version of the class CounterImpl discussed in Section 7.5. A new private instance
variable clients of type List<CounterClient> is added to manage the references to
those client objects interested in callbacks and register with the server by means of the
add() method. Analogously, remove() is the method for removing CounterClients
from the callback list.

add(), remove(), and _notify() have to be specified synchronized so that the at-
tempt of several client threads to access and change the clients list at the same time is se-
rialized and the list remains in a consistent state. Recall that a synchronized Java method
can only be executed by one thread at a certain time and all other synchronized instance
methods of the same object (in our case the CounterImpl object, the servant) are blocked

190 11 Implementing Distributed Callbacks

until execution is completed. For details on Java Threads and synchronization, we refer our
readers to the relevant literature.

Finally, we have to deal with method _notify(). It is only used in the bodies of the
CounterImpl methods inc() and dec() and therefore has no counterpart in the Coun-
ter interface (for the necessity of the leading underscore see Section 5.2). It is this method’s
task to invoke the callback on all CounterClient objects registered. To do that, for each
object in the clients list, method update() is invoked.

Store the file CounterImpl.java in the package directory CBCount on the server host,
i.e., in directory \Examples\Callback\YourORB\Server\CBCount, where Your-
ORB stands for JacORB, JDK, or OpenORB.

11.3 Implementing the CBCount Server

The implementation of the server application that instantiates a CounterImpl object con-
tains nothing new. Object creation takes place as usual; the stringified object reference is
written to a file that must be copied to the clients so they can find and access the remote
server (see Section 8.2). The file Server.java is stored and compiled in the Server di-
rectory on the server host.

// Server.java

import CBCount.*;
import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.System.*;

public class Server {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private void putRef(org.omg.CORBA.Object obj,
 String refFile) {
 ... as above in Section 8.2
 }
 public Server(String[] args, String refFile) {
 try {
 initializeORB(args);
 CounterImpl c_impl = new CounterImpl();
 Counter c = c_impl._this(orb);
 putRef(c, refFile);
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch(Exception ex) {
 out.println("Exception: "
 + ex.getMessage());

 11.5 Implementing the Client Application 191

 exit(1);
 }
 }
 public static void main(String args[]) {
 String refFile = "CBCounter.ref";
 new Server(args, refFile);
 }
}

11.4 Implementing the CounterClient Servant

We now continue on the client side. As already mentioned, the client application also must
instantiate a CORBA object on which the server can invoke the callbacks, in this example
the update() operations. The needed servant is the CounterClient. Since this exam-
ple only shall demonstrate the principles of a callback, we keep it rather simple and, again,
implement an inheritance approach. After invoking the IDL compiler in the Client subdi-
rectory on the client host, we see from the operations interface CounterClientOpera-
tions that a suitable method body for the callback method update() must be provided.
As usual, we name the servant class CounterClientImpl, and we simply print the
Counter value passed to the update() method:

// CounterClientImpl.java

package CBCount;

public class CounterClientImpl extends CounterClientPOA {
 public void update(int value) {
 System.out.println("Server information. "
 + "New Counter value: " + value);
 }
}

This file should be stored and compiled in the subdirectory Client\CBCount on the cli-
ent host.

11.5 Implementing the Client Application

Finally, we implement the client application, which is now clearly more complex than in
previous examples. It contains elements of our former pure client application discussed in
Section 7.8 but also includes elements of a typical server application since a CORBA object
must be created and prepared for incoming CORBA requests.

// Client.java

import CBCount.*;
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;

192 11 Implementing Distributed Callbacks

import org.omg.PortableServer.*;
import static java.lang.System.*;

public class Client {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private org.omg.CORBA.Object getRef(String refFile) {
 ... as above in Section 8.3
 }
 private void businessLogic(final Counter c,
 final CounterClient cc) {
 new Thread(new Runnable() {
 public void run() {
 c.add(cc);
 int inp = -1;
 do {
 out.print("Counter value: " + c.value()
 + "\nAction (+/-/e)? ");
 out.flush();
 do {
 try {
 inp = in.read();
 } catch (IOException ioe) { }
 } while (inp != '+' && inp != '-'
 && inp != 'e');
 if (inp == '+')
 c.inc();
 else if (inp == '-')
 c.dec();
 } while (inp != 'e');
 c.remove(cc);
 exit(0);
 }
 }).start();
 }
 public Client(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 Counter c = CounterHelper.narrow(obj);
 CounterClientImpl cc_impl =
 new CounterClientImpl();
 CounterClient cc = cc_impl._this(orb);
 rootPOA.the_POAManager().activate();
 businessLogic(c, cc);
 orb.run();
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch (Exception ex) {
 out.println("Exception: "
 + ex.getMessage());

 11.5 Implementing the Client Application 193

 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "CBCounter.ref";
 new Client(args, refFile);
 }
}

Like in many of our above examples, in method main(), only the name of the file needed
for reading the server object’s ID is established and then a Client object is created.

In the Client’s constructor, we, as usual, initialize the ORB. Differing from our previous
client applications, now a reference to the root POA must be obtained since the application
has to instantiate a CORBA object. Therefore, we copy the initialize() body from
Section 8.2 and not from Section 8.3 as for the clients before. Next, as usual, we read the ref-
erence to the Counter with the help of method getRef(). This reference is cast to the
correct type (Counter). The three following statements make it clear that the application
occasionally assumes the server role: a CounterClient instance is constructed, associ-
ated with the ORB containing the root POA, and activated implicitly. Then, the POA man-
ager is activated.

The two last statements in the constructor body also need to be discussed in some detail. We
have to bear in mind that the client application must carry out two tasks not easily compatible
with each other. On the one hand, in a method we called businessLogic(), the usual
client functionality must be provided. Here, this is about repeatedly accepting user input and
invoking the requested inc() or dec() method on the remote Counter object residing
on the server host. On the other hand, the application must be enabled to adopt the server role
and accept callbacks. This is intended by the call orb.run(), which, however, as we know
from Section 6.2.4, blocks the application’s main thread. We, therefore, start a new thread in
the method businessLogic(), which is invoked earlier so that the client’s first task, the
“business logic”, runs independently of its second task, the update functionality controlled by
the Counter object. To do this efficiently, we create a Thread object, which controls an
anonymous Runnable object and which is started immediately after its construction. The
statements to be executed by the new thread go into the body of the Runnable’s run()
method; again, we refer the readers to the existing literature for the usage of this standard
Java technique.

The first step in the implementation of run() is registering the CounterClient instance
cc with the Counter object c with the help of the add() method. The last step is to re-
move the client when a user terminates the input loop by entering an ‘e’. The remainder of
the code corresponds to the input loop known from Section 7.8. With the new callback ver-
sion of the Counter, the command window for the above example could look like this:

Counter value: 3
Action (+/-/e)? Server information. New Counter value: 4
Server information. New Counter value: 5
Server information. New Counter value: 4
Server information. New Counter value: 5

194 11 Implementing Distributed Callbacks

+
Server information. New Counter value: 6
Counter value: 6
Action (+/-/e)?

Now, all operations changing the server’s Counter value are displayed in each client’s
command window.

11.6 Further Usages of the Callback Technique

The above-discussed example for an application using distributed callbacks is, strictly speak-
ing, an implementation of a widely used, more specific design pattern known under the
names “Observer” [GHJV95], “Subject-Observer”, “Observer-Observable”, or “Publish-
Subscribe”. The common goal of these patterns is to define a one-to-many dependency be-
tween objects so that, when one object changes state, all its dependents are notified and up-
dated automatically.

The “Distributed Callback” design pattern can also be very useful in other contexts. For ex-
ample, Mowbray and Malveau [MM97] describe its usage in order to maximize parallelism
in distributed applications. The idea is to reduce the length of time a client spends waiting for
an operation to be completed by converting a synchronous operation to an asynchronous op-
eration. The server invokes a callback routine on the client when the operation is completed.
This approach is especially favorable when object operations take a long time and the client
application cannot afford to suspend processing waiting for results. To enable asynchronous
communication, in that case, the respective operations in the server object’s IDL interface
have to be specified oneway. Attention should, again, be paid to the syntactical restrictions
and to our practical experiences with oneway operations and their support through currently
existing ORB products, as previously mentioned in Section 4.5.2.

11.7 Exercise

1. Re-implement the dump server example of Chapter 7, Exercise 1.

a) The server now shall also write the input of a client together with the name of that
client to the command window of any client currently registered with the server.
When registering, clients have to pass their name to the server. This name can be
provided upon startup of the client application, e.g., via args[0]. Reuse as much as
possible of the code from the callback example discussed in Chapter 10.

b) Now, provide a GUI for the clients (see Figure 19). This might be a JTextArea, a
JTable, etc., together with a JTextField as demonstrated in the figure below. In
order to enable the implementation of the client’s operations interface to “dump” to
the client-side GUI, this implementation class needs an instance variable referencing
the component to be updated. To prevent deadlocking, one might want to wrap the
dump invocation triggered by the server application into a piece of code like this:

 11.7 Exercise 195

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ... dump invocation
 }
});

Figure 19: Example Client GUI

12 Utilizing Value Types

For most application scenarios in distributed, CORBA-based systems, the best solution is the
call-by-reference semantics employed to pass normal CORBA objects of a type defined
through an IDL interface during an operation invocation. However, there are a number of
situations where it might be favorable to pass an instance by value and to provide a local im-
plementation on the side of the receiver. When only working with references to remote im-
plementations, this implies, e.g., that any invocation of a CORBA object is potentially routed
via the network, thus causing significant overhead for marshaling, unmarshaling, etc. This
fact negatively influences the overall performance of the system. In the case of local invoca-
tions, this overhead is not generated so that they can altogether be executed faster.

In Section 4.6, we already briefly discussed the concept of value types, introduced in
CORBA version 2.3. In principle, objects of such a type are as powerful as normal IDL inter-
face types. However, while regular CORBA objects, i.e., objects implementing an interface
type, are only passed by reference during an operation invocation, value type objects are
passed by value; their state is serialized, transmitted to the receiver, deserialized, and copied
into a local value type instance. On the side of the receiver, we then have available a com-
plete instance with a local implementation able to accept and execute local operation invoca-
tions. To recall the various details of the different kinds of value types, we refer readers to
Section 4.6.

In this chapter, we demonstrate the practical usage of value types on the basis of a simplified
example. Here, we fall back on the principle of distributed callbacks, which we explained in
Chapter 11. Our example presents an implementation of the “Publish-Subscribe” design pat-
tern [BMRS96], discussed previously in its “Observer” pattern variation in the Counter
example in Chapter 11. Now, the distributed application consists of a Publisher object
where any number of Subscriber objects can register in order to be provided with infor-
mation repeatedly distributed by the Publisher. The Publisher object could reside on
a server host in the network; whereas, the Subscriber objects are typically generated on
client hosts.

In its simplest form, the Publisher administers a list of its registered Subscribers and
contacts and informs these objects whenever a new event needing to be published occurs. For
a more realistic scenario, assume that individual Subscriber objects are only interested in
specific types of events and should not necessarily be informed of all the events the Pub-
lisher object could publish. Then, whenever the Publisher, on the server side, trav-
erses its list and informs all registered Subscriber objects on the client hosts, these have
to decide locally whether they are going to process the corresponding event or not. Such a
design would unnecessarily entail an increase in network load since many publication mes-
sages would be sent via the network to Subscriber objects that are not at all interested in
these publications.

One approach to improve this situation would be to introduce individually adapted Filter
objects that are created and initialized by the Subscriber objects and are responsible for

198 12 Utilizing Value Types

their respective Subscriber on a one-to-one basis. If those Filter objects reside on the
server host and are accessible to the Publisher, then, with their help, unneeded messages
could be filtered out directly at their point of origin and would not have to be communicated
via the network.

During the design of such Filter objects, the problem of regular CORBA objects, which
can only be passed by reference becomes apparent. If the Filter objects are implemented
as CORBA objects of an interface type individually generated by the different Subscriber
objects residing on their client hosts, then the Filters can only be sent to the Publisher
object in the form of references; recall that the Publisher is residing on the server host.
This design, therefore, has the severe disadvantage that the Filters remain on the client
hosts and any operation invocation of Publisher initiating the “filtering” process would,
again, be routed via the network so that the intended performance gain would not be realized.

Thus, the best solution in this application scenario would be to use value types to define the
Filter instances. It is then guaranteed that a local implementation exists and filtering can
effectively take place locally on the server host although the original Filter objects are
created on their respective client hosts. Each Subscriber object can generate a suitable
Filter value type instance, initialize it with the needed filtering logic, and send it to the
Publisher object during registration. Since value types are passed by value, filtering of
the publication events can now be performed on the side of the Publisher, the event gen-
erator. If a Subscriber wants to change its filtering rules, it simply has to create a new
value type instance and send it to the Publisher. No changes in the code of the Publi-
sher’s implementation are necessary in that case.

12.1 Defining IDL Module PublishSubscribe

We begin, as usual, with the IDL definitions for the new example:

// Filtering.idl

module PublishSubscribe
{
 interface Subscriber
 {
 void notify(in unsigned long value);
 };

 valuetype Filter
 {
 private Subscriber sub;
 private unsigned long min;
 private unsigned long max;
 factory init(in Subscriber s,
 in unsigned long min,
 in unsigned long max);
 void notify(in unsigned long value);
 };

 12.2 Implementing Value Type Filter 199

 interface Publisher
 {
 void add(in Filter f);
 };
};

The type definitions for this example are grouped into the module PublishSubscribe.
Interface Subscriber, which specifies the event receiver’s type, defines a single operation
notify(). This operation is invoked by the Publisher object to communicate a publi-
cation event, which, in our example, simply consists of a new unsigned long value. The
Publisher interface defines the type of the event generator. It specifies an operation
add() that is invoked to register a new Filter instance, which is able to perform the fil-
tering for its corresponding Subscriber object in the case of a publication event. If the fil-
tering criterion is not met, the event is not filtered out and the Subscriber is notified by
an invocation of operation notify().

Filter is a regular value type. It defines three private state members, sub, min, and max
as well as an operation notify() and an initializer init(). In sub, a reference to the
Filter’s Subscriber object is stored. The values min and max are the upper and the
lower bounds of an interval that defines the filtering rule: the Subscriber using that
Filter is only interested in values falling within the interval, including its bounds. We use
this rule in order to keep the example simple and concentrate on the value type specifics. The
Filter’s operation notify() is invoked by the Publisher and is provided with the
publication event, which, in our case, consist of an unsigned long value. Should that
event pass the filtering process, i.e., the value lies in the interval [min, max], the operation
notify() is invoked on the Subscriber object sub. The factory operation init() as-
sumes the role of a constructor for instances of the Filter value type, as it was described
in Section 4.6.

One should now generate the directory structures analogous to those described in Figure 11
(for the server host) and Figure 14 (for the client hosts) and store the file Filtering.idl
on each host in directory \Examples\Values.

12.2 Implementing Value Type Filter

We now begin with the implementation of the distributed application and, as usual, start on
the server host. After setting the environment variables, we proceed analogous to the previ-
ous examples, change the current directory to \Examples\Values\YourORB\Server,
and invoke the IDL compiler to translate the definitions in Filtering.idl.

According to the mapping rules for modules, the IDL compiler creates a new Java package,
PublishSubscribe, and writes the compiled interfaces and classes to a subdirectory of
the Server directory. By now, one should be familiar with the content of the generated in-
terfaces, Publisher and Subscriber.

The result for the value type Filter is new and deserves a closer look. In Section 5.15.1,
one saw that a regular value type like Filter is mapped to an abstract Java class with the
same name that implements the org.omg.CORBA.portable.StreamableValue in-

200 12 Utilizing Value Types

terface. The class declaration is given below; note how the state members sub, min, and
max are mapped to instance variables and where they appear in the method declarations.

// Filter.java

package PublishSubscribe;

public abstract class Filter implements
 org.omg.CORBA.portable.StreamableValue {
 protected PublishSubscribe.Subscriber sub = null;
 protected int min = (int)0;
 protected int max = (int)0;
 private static String[] _truncatable_ids = {
 PublishSubscribe.FilterHelper.id()
 };
 public String[] _truncatable_ids() {
 return _truncatable_ids;
 }
 public abstract void _notify(int value);
 public void _read(org.omg.CORBA.portable.
 InputStream istream) {
 this.sub = PublishSubscribe.
 SubscriberHelper.read(istream);
 this.min = istream.read_ulong();
 this.max = istream.read_ulong();
 }
 public void _write(org.omg.CORBA.portable.OutputStream
 ostream) {
 PublishSubscribe.SubscriberHelper.write(ostream,
 this.sub);
 ostream.write_ulong(this.min);
 ostream.write_ulong(this.max);
 }
 public org.omg.CORBA.TypeCode _type() {
 return PublishSubscribe.FilterHelper.type();
 }
}

The interface StreamableValue is itself a subinterface of org.omg.CORBA.port-
able.ValueBase that declares the method _truncatable_ids(). The Filter
class provides an implementation of that method. The intention is to return a String array
with the repository IDs of all supertypes that can be narrowed to the respective value type.
Remember that a repository ID is the unique identifier string associated with a named IDL
type and thus represents a unique type identifier. If one inspects the FilterHelper, one
finds that, in our example, the array contains only one element: "IDL:PublishSub-
scribe/Filter:1.0". Since the internally needed methods _read(), _write(),
and _type() are also generated, the only method that remains to be implemented is _no-
tify(), the outcome of translating the IDL operation notify().

In the Filter’s IDL definition, an initializer operation init() is specified. As a conse-
quence, a Java interface FilterValueFactory is created. This value factory interface
declares one single method, init(), that constructs and returns a Filter instance. The
FilterValueFactory is a subinterface of org.omg.CORBA.portable.Value-

12.2 Implementing Value Type Filter 201

Factory, which declares one method, read_value(), that is invoked by the ORB run-
time when unmarshaling a Filter value.

In addition, the IDL compiler generates the usual helper and holder classes, FilterHel-
per and FilterHolder. One difference to the schema used up until now is that, for each
factory operation, a static method with the same name, a corresponding parameter list,
and an additional first parameter of type org.omg.CORBA.ORB is declared. When this
method is invoked, the ORB first looks up a value type factory and then delegates instance
construction to it.

In summary, the following tasks to be carried out still remain:

write a non-abstract subclass of class Filter; as usual, we name that class Fil-
terImpl and

implement the FilterValueFactory interface in the form of a class Filter-
ValueFactoryImpl or test whether the IDL compiler-generated standard imple-
mentation FilterDefaultFactory is sufficient for the intended application.

12.2.1 Implementing the FilterImpl Class

The implementation of class FilterImpl is rather straightforward:

// FilterImpl.java

package PublishSubscribe;

public class FilterImpl extends Filter {
 public FilterImpl() { }
 public FilterImpl(Subscriber sub, int min, int max) {
 this.sub = sub;
 this.min = min;
 this.max = max;
 }
 public void _notify(int value) {
 if (min <= value && value <= max)
 sub._notify(value);
 }
}

The interesting part is the body of method _notify(). Here, the concrete filtering mecha-
nism is implemented. We have to test whether the publication event should be passed to the
Subscriber or not. In our example, this task is reduced to comparing the value to the
bounds min and max. If the event value lies within the bounds, the event is communicated
to the Subscriber by invoking _notify() on sub. Otherwise, no publishing activity is
necessary, no remote method is invoked, and the event is filtered out. The FilterImpl’s
default constructor must be declared so that the standard implementation FilterDe-
faultFactory of the Filter value factory can also be used (see the next section).

At the moment, we develop the server part of the application. It should be noted that also the
Subscriber objects on the client hosts need the FilterImpl class since they have to be

202 12 Utilizing Value Types

able to create Filter instances according to their filtering strategy. Therefore, we can now
copy the file FilterImpl.java to the PublishSubscribe subdirectory of the Cli-
ent directory on the client hosts. Since value type instances are passed by value, the server
application on the server host must also provide a local implementation of that type. Other-
wise, the serialized state values transmitted via the network could not be reconstructed into
concrete instances of the value type. The value type factories, discussed in the next section,
are employed specifically for that purpose. We also store the FilterImpl.java file in
the Server/PublishSubscribe subdirectory on the server host.

12.2.2 Using Class FilterDefaultFactory

As mentioned above, a special mechanism is employed to reconstruct a value type instance
passed to the receiver object in a CORBA system. The concept is based on a value factory.
The ORB on the receiver side must create a new, local instance of the value type and initial-
ize it with the transmitted state values. To that aim, it locates a suitable factory object and in-
vokes operation read_value() on it. Therefore, all Java-based value factories have to
implement the interface org.omg.CORBA.portable.ValueFactory, which results
from the mapping of IDL interface CORBA::ValueFactory, introduced in CORBA 2.3.

package org.omg.CORBA.portable;

public interface ValueFactory {
 java.io.Serializable read_value(
 org.omg.CORBA_2_3.portable.InputStream is);
};

The implementation of the ValueFactory is achieved indirectly by implementing the sub-
interface FilterValueFactory, generated by the IDL compiler; we briefly discussed
both interfaces above at the beginning of Section 12.2.

There are two ways for an ORB to obtain a value type’s value factory. Either a standard im-
plementation is available or a specific factory implementation was explicitly registered for
the value type’s repository ID. The standard implementation an IDL compiler generates for
the Filter value type is the class FilterDefaultFactory, which has the following
declaration:

// FilterDefaultFactory.java

package PublishSubscribe;

public class FilterDefaultFactory implements
 FilterValueFactory {
 public Filter init(PublishSubscribe.Subscriber s,
 int min, int max) {
 return new FilterImpl(s, min, max);
 }
 public java.io.Serializable read_value(
 org.omg.CORBA_2_3.portable.InputStream is) {
 return is.read_value(new FilterImpl());
 }
}

 12.2 Implementing Value Type Filter 203

It can be seen how the init() method is implemented and how it creates and initializes a
new FilterImpl instance and returns it with a reference of type Filter. It can also be
seen that it is expected that we follow the naming conventions and use the name Filter-
Impl for the Filter’s implementation class. Finally, it can be seen why a default con-
structor had to be declared for the FilterImpl class; it is invoked in method
read_value(). For our purposes, this standard implementation is perfectly sufficient. It is
easy to use and has the advantage that no explicit registration is necessary. A precondition
for its employment is, however, that the repository not be modified by means of #pragma
prefix directives or typeprefix statements since the ORB determines the name of the
default factory simply through trimming the repository ID string and appending De-
faultFactory. In case of repository modifications or when a specific factory implemen-
tation is required, the corresponding class has to be registered with the ORB.

Since CORBA version 2.3, the Java mapping of the ORB interface provides the methods
register_value_factory(), unregister_value_factory(), and lookup_
value_factory() for the purpose of registering, unregistering, or finding a factory im-
plementation. Note the package declaration in the following code snippet. Note also, that the
mapping declares the class abstract and provides only dummy implementations that ORB
vendors shall have to complete.

package org.omg.CORBA_2_3;

public abstract class ORB extends org.omg.CORBA.ORB {
 public org.omg.CORBA.portable.ValueFactory
 register_value_factory(String id,
 org.omg.CORBA.portable.ValueFactory factory) {
 throw new org.omg.CORBA.NO_IMPLEMENT();
 }
 public void unregister_value_factory(String id) {
 throw new org.omg.CORBA.NO_IMPLEMENT();
 }
 public org.omg.CORBA.portable.ValueFactory
 lookup_value_factory(String id) {
 throw new org.omg.CORBA.NO_IMPLEMENT();
 }
 ...
}

We discuss the usage of method register_value_factory() below when imple-
menting the server application.

Should the default implementation FilterDefaultFactory not be suitable for the re-
quirements of an application, it is possible to develop one’s own factory implementation, for
example, in the form of a class FilterValueFactoryImpl. In order to enable the ORB
to use this specific factory, it must be explicitly registered with an invocation of the method
register_value_factory().

The easiest way to do develop one’s own factory is to declare the class FilterValue-
FactoryImpl as a subclass of the FilterDefaultFactory, e.g.:

204 12 Utilizing Value Types

// FilterValueFactoryImpl.java

package PublishSubscribe;

public class FilterValueFactoryImpl extends
 FilterDefaultFactory {
 public Filter init(Subscriber sub, int min, int max) {
 ...perform required calculations
 and return suitable new FilterImpl object
 }
}

If intending to use one’s own implementation, the file FilterValueFactory-
Impl.java should be stored in the PublishSubscribe subdirectory of the Server
directory on the server host. In our simple example, there is no need to extend the default
implementation written by the IDL compiler to that directory.

12.3 Implementing Class PublisherImpl

Apart from the above-mentioned Java class FilterImpl and, possibly, the specific Fil-
terValueFactoryImpl, the following classes have to be implemented to install our dis-
tributed application:

PublisherImpl.java,

PublisherApp.java,

SubscriberImpl.java, and

SubscriberApp.java.

At the moment, we remain on the server host and, therefore, begin with the first two classes.
The purpose of the PublisherImpl class is to implement the IDL interface Publisher.
As always, the operations that need to be defined and, especially, their signatures can be loo-
ked up in the operations interface PublisherOperations.

// PublisherImpl.java

package PublishSubscribe;

import java.util.*;

public class PublisherImpl extends PublisherPOA {
 private List<Filter> filters = new ArrayList<Filter>();
 public synchronized void add(Filter f) {
 filters.add(f);
 }
 public List<Filter> getFilters() {
 return filters;
 }
}

 12.4 Implementing the Server Application 205

In this example, we use the inheritance approach. The only method that must be implemented
is the method add(), which has a corresponding counterpart on the IDL level. Its purpose is
to register Filters with the Publisher. We declare an instance variable filters of
type List<Filter>, initialize it with an ArrayList object, and simply insert the Fil-
ter instance into the list whenever add() is called. Access to the list must be synchronized
so that concurrent insertions do not result in unexpected behavior. Since a servant class is not
restricted to implementing only the IDL-specified operations, it is convenient to declare an
additional method, getFilters(), which can be invoked locally and returns the list of
currently registered Filters.

The servant, PublisherImpl.java, should also be stored in the Server\Publish-
Subscribe subdirectory on the server host.

12.4 Implementing the Server Application

The last step to be carried out on the server side concerns the server application, imple-
mented through a class PublisherApp:

// PublisherApp.java

import PublishSubscribe.*;
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.System.*;

public class PublisherApp {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private void putRef(org.omg.CORBA.Object obj,
 String refFile) {
 ... as above in Section 8.2
 }
 private void businessLogic(final PublisherImpl p_impl) {
 new Thread(new Runnable() {
 public void run() {
 for (;;) {
 int message = (int)(1000*Math.random());
 out.println("Sending message: " + message);
 for (Filter f: p_impl.getFilters()) {
 if (f != null)
 try {
 f._notify(message);
 } catch (Exception ex) { }
 }
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ign) { }

206 12 Utilizing Value Types

 }
 }
 }).start();
 }
 public PublisherApp(String[] args, String refFile) {
 try {
 initializeORB(args);
 PublisherImpl p_impl = new PublisherImpl();
 Publisher p = p_impl._this(orb);
 putRef(p, refFile);
 rootPOA.the_POAManager().activate();
 businessLogic(p_impl);
 orb.run();
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "Publisher.ref";
 new PublisherApp(args, refFile);
 }
}

The file PublisherApp.java is stored in the Server directory on the server host. The
methods initializeORB() and putRef() can be reused entirely from our previous
examples. Also, the constructor and the main() method should, by now, look familiar: the
ORB is initialized, a servant object is created and activated, and its IOR is written in string
form to a file. Then, method businessLogic() is called and, through orb.run(), the
control flow is passed to the ORB so that it can wait for clients requesting registration of new
Filter instances.

The realization of the server’s businessLogic() bears some resemblance to the server
application in the callback example of Chapter 11. In order to enable the Publisher to
publish new values from time to time, we start a new thread. The run() method is imple-
mented such that, repeatedly (every second; see the Thread.sleep(1000) statement), a
new publication event is generated. In our simple example, this is just a random int value
between 0 (inclusive) and 1,000 (exclusive). Afterwards, this value is passed to all Filters
in the list filters through a call of method _notify(). The way a Filter handles
such a call was already discussed above in Section 12.2.

In this form, our implementation relies on the FilterDefaultFactory. This approach
has the advantage that it is not necessary to write one’s own value factory and no explicit
registration with the ORB is needed. Should one want to use a specific value factory that one
provides in a class FilterValueFactoryImpl, then the two following statements have
to be included directly before the putRef(p, refFile) statement in the Publisher-
App constructor:

FilterValueFactoryImpl factory =
 new FilterValueFactoryImpl();
((org.omg.CORBA_2_3.ORB)orb).register_value_factory(
 FilterHelper.id(), factory);

 12.6 Implementing the Client Application 207

Here, a new value factory object is created and then the method register_value_fac-
tory() is called for its registration. This method is only available since CORBA version
2.3, hence, the cast of the variable orb. The first argument of the registration method is the
repository ID of the value type; the second is the factory instance to be registered.

The server application and the necessary components are now completed. In order to trans-
late them, invoke the Java compiler from the directory \Examples\Values\Your-
ORB\Server on the server host. After successful compilation, the server is ready to be star-
ted.

When using the default value factory, here the FilterDefaultFactory, note that the
corresponding class is not automatically compiled since it is not explicitly used in the server
application. Therefore, one has to compile it separately, e.g., by invoking javac Pub-
lishSubscribe\FilterDefaultFactory.java in the Server directory. Other-
wise, it is possible to run the server but as soon as a client tries to register a filter it crashes.

12.5 Implementing Class SubscriberImpl

Having discussed the implementation of the server-side details of the Publisher compo-
nent, we concentrate on the characteristic features of the client-side Subscriber part of
the distributed CORBA application in the following. As a first step, as always, one should
compile the IDL definitions in file Filtering.idl. Next, we begin defining the client
application by providing an implementation of the Subscriber interface. The correspond-
ing class, SubscriberImpl, might be declared as follows:

// SubscriberImpl.java

package PublishSubscribe;

public class SubscriberImpl extends SubscriberPOA {
 public void _notify(int value) {
 System.out.println("Received message: " + value);
 }
}

Again, we implement the inheritance approach and extend the SubscriberPOA class. In-
spection of the SubscriberOperations interface shows that only the Java counterpart
_notify() of the IDL operation notify() has to be declared. In this simple example,
we only print the published value to the console window.

12.6 Implementing the Client Application

To complete the Publish/Subscribe application, at this point, only the SubscriberApp
class has to be declared; it takes on the role of the client application. In analogy to the call-
back example, the notion client is not absolutely correct since SubscriberApp is not a
“pure” client application. A CORBA object of type Subscriber is created on the client

208 12 Utilizing Value Types

host. This object is informed of the publication events that pass the filter and, thus, also pro-
vides server functionality.

Reusing as much as possible from the code of previous clients, the SubscriberApp class
could be declared in this way:

// SubscriberApp.java

import PublishSubscribe.*;
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.Math.*;
import static java.lang.System.*;

public class SubscriberApp {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private org.omg.CORBA.Object getRef(String refFile) {
 ... as above in Section 8.3
 }
 public SubscriberApp(String[] args, String refFile) {
 try {
 int lo = Integer.valueOf(args[0]),
 hi = Integer.valueOf(args[1]);
 int min = min(max(lo, 0), min(hi, 1000)),
 max = max(max(lo, 0), min(hi, 1000));
 initializeORB(args);
 SubscriberImpl s_impl = new SubscriberImpl();
 Subscriber s = s_impl._this(orb);
 FilterImpl f_impl = new FilterImpl(s, min, max);
 org.omg.CORBA.Object obj = getRef(refFile);
 Publisher p = PublisherHelper.narrow(obj);
 p.add(f_impl);
 out.println("Activating Subscriber filtering with "
 + min + " and " + max);
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch (Exception ex) {
 out.println("Exception: " + ex);
 exit(1);
 }
 }
 public static void main(String[] args) {
 if (args.length < 2) {
 out.println("Start with"
 + "\n\tjava/jrun SubscriberApp <min> <max>,"
 + " 0 <= min < max <= 1000");

12.7 Exercises 209

 return;
 }
 String refFile = "Publisher.ref";
 new SubscriberApp(args, refFile);
 }
}

This file should be stored in the directory \Examples\Values\YourORB\Client on
the client hosts.

Most of the above statements need no further discussion since we used them in a similar
form in previous examples. Besides the classes and interfaces generated by the IDL compiler,
the application needs the implementations of the FilterImpl and the Subscrib-
erImpl. These have to be present in each client’s PublishSubscribe subdirectory.
However, the implementations of the Publisher interface (PublisherImpl) and the
Filter value factory (FilterDefaultFactory or FilterValueFactoryImpl)
are not needed. While the former is immediately clear, the latter is due to the fact that, on the
client host, the initial Filter objects are created with the help of the FilterImpl class.
Only the server application needs to be able to recreate serialized Filter instances sent to
it; and, therefore, it requires a factory implementation.

The SubscriberApp is started with two integer command-line arguments, min and max,
which define the filtering criteria for the new client object. The rest of the class declaration
deserves no further explanations.

Compilation of the client application on the client hosts occurs analogous to the server appli-
cation. After setting the required environment variables, the Java compiler for the respective
ORB is invoked in the Client directory.

Finally, the application can be started in the usual sequence of steps:

start the server application;

copy the file "Publisher.ref", which contains the reference to the Publisher
object, to the client hosts and store it in the directory where the client application is
invoked; and

start the client application, providing the min and des max values.

When running the application, one notes that no method for appropriate termination of the
clients is provided and that simply stopping them with Control-C causes the Publisher’s
list of registered filters to become obsolete (see Exercise 4 below).

12.7 Exercises

1. How might a delegation-based variation of the Publisher look? What are the advan-
tages or disadvantages?

2. Design a value type-based variant of the TimeServer example introduced in Chapter
9. Which advantages and disadvantages with respect to the earlier version can be recog-
nized?

210 12 Utilizing Value Types

3. What would be the consequences of removing the following try statement from the
class PublisherApp and calling _notify() directly?

 try {
 f._notify(message);
 }
 catch(Exception e) { }

4. Provide the SubscriberApp with a third command-line argument that specifies the
duration (in seconds) a subscriber is registered with the publisher. After this time, remove
the subscriber’s filter from the publisher’s list. Note that one cannot simply implement a
remote remove(Filter f) call for the filter inserted into the list because the argu-
ment to remove() is only passed by value and is not found in the list. Therefore im-
plement the following IDL definition for the Publisher:

 interface Publisher
 {
 long add(in Filter f);
 void remove(in long index);
 };

In the PublisherImpl’s add() method, return the index where the filter was in-
serted into the list, pass this index when remove() is called, and replace the corre-
sponding entry in the filters list by null. Test your implementation with more than
one client.

5. The IDL definitions of the Subscriber and the Filter contain an operation noti-
fy(). An IDL designer suggests to define the Filter value type such that it sup-
ports the Subscriber interface and also to change the signature of the Pub-
lisher’s add() operation to add(in Subscriber s). Discuss advantages and
disadvantages of that design.

13 Utilizing Interfaces of the
DynamicAny Module

From Section 5.16, we are already familiar with the generic container type any and its map-
ping to Java with the class org.omg.CORBA.Any. If we use an any as parameter or re-
turn type in IDL operations, we gain maximum flexibility when passing arguments or receiv-
ing result values since the actual types of the arguments or the result can be dynamically de-
termined at run-time. An any instance contains not only a value but also type information
for that value in the form of a TypeCode (see Section 6.5); therefore, it is completely self-
describing and type safe. Utilizing anys, however, generates additional marshaling overhead
so they should only be employed when a significant advantage is achieved. Examples could
be operations with parameters needing to process a large number of different types or of
complex, recursively defined data structures. In order to develop generic programs, such as
CORBA bridges or messaging services, where, at compile-time, it is unknown which data
types need to be passed to or from certain operations at run-time, the flexibility offered by
the any type might prove to be very helpful.

The mapping of the IDL type any to the Java class org.omg.CORBA.Any has one serious
disadvantage. In order to insert the value of a non-basic type into an Any object or to extract
it from such an object, it is mandatory to fall back on the compiler-generated stub code for
that user-defined type. There are situations where very generic programs shall be developed
so that it is not possible to provide the compiled stubs for all the potentially useful data types.
In these situations, the interfaces of the DynamicAny module provide a flexible means for
dynamic type manipulation. Before we discuss this module in detail, we first recapitulate the
basic elements of dealing with Anys and TypeCodes.

13.1 Usage of Anys and TypeCodes

Recall that in Section 5.16 we briefly described the two ways for accessing an Any object in
Java: insertion or extraction of a value. Depending on whether the value is of a pre-defined
type or a user-defined type, we directly invoke the methods of class Any (see Table 10) or
the methods of the corresponding helper class (see Section 5.5).

In the following, we demonstrate both type categories with the aid of a first example. There,
a simple, distributed application is developed where the client application inserts the
string value ”12:00:00” and, consecutively, the same time 12:00:00, represented by
the Time structure we have repeatedly used above, into an Any object. This object is then
passed as an argument to a server object’s method display_any().

Examine the following IDL file AnyServer.idl, which should be stored on one’s client
and server hosts in directory \Examples\Any and compiled, as usual, from the respective
Client and Server subdirectories.

212 13 Utilizing Interfaces of the DynamicAny Module

// AnyServer.idl

module AnyTest
{
 struct Time
 {
 unsigned long hours;
 unsigned long minutes;
 unsigned long seconds;
 };
 interface AnyServer
 {
 void display_any(in any a);
 };
};

In module AnyTest, at first, the well-known structure Time is defined. Then, the interface
AnyServer is specified; it defines the operation display_any(), which contains an in
parameter of type any.

We now turn to the client application. Here, the string object and, afterwards, the Time
object are inserted into an Any object. This object is then passed to the server’s method
display_any(), which is invoked twice. The structure of the client application ACli-
ent.java resembles the previous implementations. It should be stored and compiled as
usual in directory \Examples\Any\YourORB\Client.

// AClient.java

import AnyTest.*;
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import static java.lang.System.*;

public class AClient {
 private ORB orb;
 private void initializeORB(String[] args) {
 ... as above in Section 8.3
 }
 private org.omg.CORBA.Object getRef(String refFile) {
 ... as above in Section 8.3
 }
 public AClient(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 AnyServer as = AnyServerHelper.narrow(obj);
 Any any = orb.create_any();
 any.insert_string("12:00:00");
 as.display_any(any);
 Time t = new Time(12, 0, 0);
 TimeHelper.insert(any, t);
 as.display_any(any);
 } catch (BAD_PARAM ex) {

 13.1 Usage of Anys and TypeCodes 213

 out.println("Narrowing failed");
 exit(3);
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "AnyServer.ref";
 new AClient(args, refFile);
 }
}

The standard approach of initializing the ORB and accessing the reference to the server ob-
ject need not be explained anew. Interesting is the insertion of the two values of the IDL
types string and Time into the newly constructed Any object. At first, we invoke the
ORB’s method create_any(), to obtain the Any object. Then, we call the Any method
insert_string() and the TimeHelper method insert() to insert the string va-
lue and the Time value, respectively.

The task of the AnyServer servant and its method display_any() is to extract and
display the value contained in the received Any object. Store the file AnyServer-
Impl.java in the directory \Examples\Any\YourORB\Server\AnyTest on the
server host:

// AnyServerImpl.java

package AnyTest;
import org.omg.CORBA.*;
import static java.lang.System.*;

public class AnyServerImpl extends AnyServerPOA {
 public void display_any(Any any) {
 if ((any.type()).kind() == TCKind.tk_string) {
 String s = any.extract_string();
 out.println("Server decomposed string value "
 + s + " from Any object!");
 }
 else if ((any.type()).equivalent(TimeHelper.type())) {
 Time t = TimeHelper.extract(any);
 out.println("Server decomposed Time value "
 + t.hours
 + ((t.minutes < 10)? ":0": ":") + t.minutes
 + ((t.seconds < 10)? ":0": ":") + t.seconds
 + " from Any object!");
 }
 else {
 out.println("Type in Any object unknown");
 }
 }
}

214 13 Utilizing Interfaces of the DynamicAny Module

Note that to extract the value contained in the Any object any, we call the Any method ex-
tract_string() (for the string-value) and the TimeHelper method extract()
(for the Time value).

The test that determines which type is actually contained in the Any object is carried out in
two steps. First, we invoke the Any method type() and obtain the type code of the value
stored in the object any. The result is of type org.omg.CORBA.TypeCode (see Section
6.5). This type code is then compared to the two types we expect. In the first case, we com-
pare to the pre-defined CORBA type string and, to that end, invoke the TypeCode ob-
ject’s method kind(). The result is an enumerator of type org.omg.CORBA.TCKind,
which can immediately be compared to the value in question, here org.omg.CORBA.TC-
Kind.tk_string. The complete list of TCKind enumerators is displayed in Section 6.5.

In the second case of a user-defined type, we invoke the TypeCode object’s method
equivalent() and pass the type code to compare to as an argument. Since the type code
of a user-defined type can be obtained by invoking the method type() of the corresponding
helper class, the test expression in this case has the form

 (any.type()).equivalent(TimeHelper.type())

To complete the server side of the application, we now only need to implement the usual pat-
tern demonstrated in Section 8.2: create an AnyServer object, write the reference to a file,
which is sent to the clients, etc. The server application could be named AServer.java
and stored and compiled in directory \Examples\Any\YourORB\Server on one’s
server host. Once the complete application is running, the following output should be ob-
tained on one’s server console whenever a client is started:

Server decomposed string value 12:00:00 from Any object!
Server decomposed Time value 12:00:00 from Any object!

13.2 DynamicAny API

The example in the preceding section demonstrated that the standard usage of the Java
equivalent of the IDL type any for user-defined data types is based on methods in the helper
classes of these types. If, at compile-time, no knowledge concerning the respective IDL defi-
nitions is accessible, a way must be found to, nevertheless, compose any instances contain-
ing such values at run-time and to retrieve values from them. This situation might occur
when generic applications such as debuggers, flexible user interfaces, messaging services,
etc., are to be developed. Also in the context of employing functionality provided by the Dy-
namic Invocation Interface or the Dynamic Skeleton Interface, such problems might need to
be solved.

The solution is offered by the DynamicAny API, which, in CORBA 2.3, is embedded in its
own module DynamicAny. DynamicAnys were first introduced in version 2.2; at that
time, however, they were part of the CORBA module. There are also some conceptual differ-
ences that make it necessary to adapt applications based on CORBA 2.2 should they rely on
the DynamicAny functionality.

13.2 DynamicAny API 215

The DynamicAny module specifies eleven local IDL interfaces. Interface DynAny is the
DynamicAny API’s central interface. DynAny enables a CORBA application to compose a
value at run-time whose type is unknown at compile-time and to pass it to a remote program
in an any instance. Reciprocally, an application that receives an any object is able to, both,
interpret the contained type by means of the TypeCode interface and to extract the con-
tained value by means of the DynAny interface as well; interpretation and extraction are
possible without having static knowledge of the corresponding IDL types. In order to create
an any value dynamically, first a DynAny object must be constructed and initialized with
the value it shall encapsulate; then, the desired any object can be generated from the Dyn-
Any. Similarly, to decompose an any value dynamically, first, a DynAny object is initial-
ized with this any and, after that, the DynAny’s operations are invoked in order to extract
the original value. Even though this approach might seem complicated, it must be followed
whenever dynamic value insertion or extraction is desired.

The list below is a compilation of important functionality provided by the DynamicAny
API. Seven categories of operations are available:

factory operations for DynAny objects,

life cycle operations copying or destroying DynAny objects,

TypeCode operations for inserting or extracting TypeCodes into or from DynAny
objects,

insert operations for inserting values of basic types into a DynAny object or for com-
posing more complex DynAny objects from other DynAny objects,

extract operations for getting basic values from DynAny objects or for decomposing
them,

iterator operations for navigating from one component within a complex DynAny ob-
ject to the next component, and

conversion operations for generating an any from a DynAny object or for initializing
a DynAny object from an any value.

Figure 20 gives an overview of these operations and their interfaces. Besides the central in-
terface DynAny, the module DynamicAny defines ten additional interfaces. Among these
are the interface DynAnyFactory, which is used for creating DynAny objects, and inter-
faces such as DynStruct or DynSequence, which are subinterfaces of DynAny repre-
senting structures or sequences. In the next section, all eleven interfaces are presented briefly.

Note that all of module DynamicAny’s interfaces are specified local; they are “locality
constrained” and their instances cannot be transferred via remote invocations nor can refer-
ences to such instances be stringified via object_to_string().

13.2.1 DynAnyFactory Interface

Let us begin discussion of the DynamicAny API with the interface DynAnyFactory; it
provides the factory operations for creating DynAny objects.

216 13 Utilizing Interfaces of the DynamicAny Module

Practical usage of the DynAny factory requires an application has, previously, obtained a
corresponding initial reference to that factory. To that purpose, the well-known ORB opera-
tion resolve_initial_references() may be invoked with the argument "Dyn-
AnyFactory".

Slanted operations
are not yet supported
by the Java mapping.

<< local interface >>
DynUnion

get_discriminator():DynAny
set_discriminator(in DynAny)
set_to_default_member()
set_to_no_active_member()
has_no_active_member():boolean
discriminator_kind():TCKind
member():DynAny
member_name():FieldName
member_kind():TCKind

<< local interface >>
DynEnum

get_as_string():string
set_as_string(in string)
get_as_ulong():unsigned long
set_as_ulong(in unsigned long)

<< local interface >>
DynFixed

get_value():string
set_value(in string):boolean

<< local interface >>
DynAny

type():TypeCode
assign(in DynAny)
from_any(in any)
to_any():any
equal(in DynAny):boolean
destroy()
copy():DynAny
insert_boolean (in boolean)
insert_octet (in octet)
insert_char (in char)
insert_short (in short)
insert_ushort (in unsigned short)
insert_long (in long)
insert_ulong (in unsigned long)
insert_float (in float)
insert_double (in double)
insert_string (in string)
insert_reference (in Object)
insert_typecode (in TypeCode)
insert_longlong (in long long)
insert_ulonglong (in unsigned long long)
insert_longdouble (in long double)
insert_wchar (in wchar)
insert_wstring (in wstring)
insert_any (in any)
insert_dyn_any (in DynAny)
insert_val(in ValueBase)
get_boolean():boolean
get_octet():octet
get_char():char
get_short():short
get_ushort():unsigned short
get_long():long
get_ulong ():unsigned long
get_float ():float
get_double ():double
get_string ():string
get_reference ():Object
get_typecode ():TypeCode
get_longlong ():long long
get_ulonglong():unsigned long long
get_longdouble():long double
get_wchar ():wchar
get_wstring ():wstring
get_any ():any
get_dyn_any ():DynAny
get_val():ValueBase
seek(in long):boolean
rewind ()
next():boolean
component_count():unsigned long
current_component():DynAny
[...]

current_member_name():FieldName
current_member_kind():TCKind
get_members():NameValuePairSeq
set_members(in NameValuePairSeq)
get_members_as_dyn_any():NameDynAnyPairSeq
set_members_as_dyn_any(in NameDynAnyPairSeq)

<< local interface >>
DynStruct

get_elements():AnySeq
set_elements(in AnySeq)
get_elements_as_dyn_any():DynAnySeq
set_elements_as_dyn_any(in DynAnySeq)

<< local interface >>
DynArray

get_length():unsigned long
set_length(in unsigned long)
get_elements():AnySeq
set_elements(in AnySeq)
get_elements_as_dyn_any():DynAnySeq
set_elements_as_dyn_any(in DynAnySeq)

<< local interface >>
DynSequence

create_dyn_any(in any):DynAny
create_dyn_any_from_type_code(in TypeCode):DynAny
create_dyn_any_without_truncation(in any):DynAny
create_multiple_dyn_anys(in AnySeq, in boolean):DynAny
create_multiple_anys(in DynAnySeq):AnySeq

<< local interface >>
DynAnyFactory

<< local interface >>
DynValueCommon

is_null():boolean
set_to_null()
set_to_value()

<< local interface >>
DynValue

current_member_name():FieldName
current_member_kind():TCKind
get_members():NameValuePairSeq
set_members(in NameValuePairSeq)
get_members_as_dyn_any():NameDynAnyPairSeq
set_members_as_dyn_any(in NameDynAnyPairSeq)

<< local interface >>
DynValueBox

get_boxed_value():any
set_boxed_value(in any)
get_boxed_value_as_dyn_any():DynAny
set_boxed_value_as_dyn_any(in DynAny)

Figure 20: Interfaces in the DynamicAny Module

13.2 DynamicAny API 217

Here is the IDL specification of the DynAnyFactory interface:

module DynamicAny
{
 ...
 local interface DynAnyFactory
 {
 exception InconsistentTypeCode { };
 DynAny create_dyn_any(in any value)
 raises(InconsistentTypeCode);
 DynAny create_dyn_any_from_type_code(
 in CORBA::TypeCode type)
 raises(InconsistentTypeCode);
 };
};

The create_dyn_any() operation creates a new DynAny object from an any value.
Not only the proper any value, but also its type, i.e., the TypeCode associated with it, is
assigned to the resulting DynAny object. The run-time type of the result returned depends on
that TypeCode’s value. If the type of the value in the any is neither a structure, exception,
sequence, array, union, enumeration, fixed, or value type, then a DynAny is returned from
the invocation; otherwise, the dynamic type of the object reference is a subtype of type Dy-
nAny. Corresponding to the value embedded in the any, a DynSequence, DynStruct,
etc., might, for example, be returned. If necessary, the reference may be cast to this dynamic
type with an invocation of narrow(). In the Java mapping, a simple Java downcast is to be
used. If not sure about the actual dynamic type of a DynAny, we can extract its TypeCode,
inspect the TCKind value, and then cast to the proper subtype.

The second factory operation, create_dyn_any_from_type_code(), may be in-
voked to create DynAny objects with a default initialization when the type inside the Dyn-
Any is already known but the value is still unknown. The respective TypeCode must be
passed to the invocation. The default values for initialization of DynAny objects are

values of type boolean are initialized to FALSE,

values of numeric types and of type octet, char, or wchar are initialized to 0 or
0.0, respectively,

the empty string is used for types string and wstring,

object references are initialized to null,

for TypeCode instances, the TCKind value of tk_null is used, and

any instances are initialized such that they contain a TypeCode with a TCKind
value of tk_null and no value.

For complex types, the following rules apply:

sequences are initialized to an empty sequence,

for fixed-point types, the default value is zero,

for enumerations, the value of the enumerator is the first enumerator value indicated
by the TypeCode,

218 13 Utilizing Interfaces of the DynamicAny Module

the members of a structure, an exception, or an array are (recursively) initialized to
their default values, and

value type values are initialized to a null value.

Creation of DynAnys with a TCKind of tk_null or tk_void is legal and results in the
creation of a DynAny object without a value and with zero components. If, during creation,
an invalid or obsolete TypeCode is used, the factory operations raise an exception of type
InconsistentTypeCode.

Note that the TypeCode copied implicitly or explicitly into a DynAny object during its
creation remains the same during the entire lifetime of that object and cannot be changed
later.

13.2.2 DynAny Interface

After having discussed how DynAny objects are created, we can now turn to the contents of
the actual DynAny interface. The following excerpt of the IDL specification shows the most
relevant elements:

module DynamicAny
{
 ...
 local interface DynAny
 {
 exception InvalidValue { };
 exception TypeMismatch { };

 CORBA::TypeCode type();

 void assign(in DynAny dyn_any) raises(TypeMismatch);
 void from_any(in any value)
 raises(TypeMismatch, InvalidValue);
 any to_any();

 boolean equal(in DynAny dyn_any);

 void destroy();
 DynAny copy();

 void insert_any(in any value)
 raises(TypeMismatch, InvalidValue);
 void insert_dyn_any(in DynAny value)
 raises(TypeMismatch, InvalidValue);
 void insert_<type>(in <type> value)
 raises(TypeMismatch, InvalidValue);

<type> get_<type>()
 raises(TypeMismatch, InvalidValue);

boolean seek(in long index);
 void rewind();
 boolean next();
 unsigned long component_count();

 13.2 DynamicAny API 219

 DynAny current_component() raises(TypeMismatch);

 void insert_<type>_seq(in CORBA::<type>Seq value)
 raises(TypeMismatch, InvalidValue);
 CORBA::<type>Seq get_<type>_seq()
 raises(TypeMismatch, InvalidValue);
 ...
 };
};

The life cycle operation copy() creates a deep copy of the DynAny object on which it is
invoked; similarly, a destroy() invocation destroys a DynAny object and frees the re-
sources used to represent its data value, including any DynAny objects of which it is com-
posed. In order to prevent memory leaks, for each DynAny that was created with a factory
operation or by a copy() invocation, destroy() should be invoked explicitly before it is
no longer referenced. In practice, most ORB products simply ignore the invocation but the
standard requires this procedure and we keep to it for reasons of portability. Invoking
copy() or destroy() on an already destroyed object results in an exception of type OB-
JECT_NOT_EXIST.

The assign() operation initializes the value associated with the DynAny object to the
value of the argument. Note that such an assignment is only admissible if source and target
have the same TypeCode; this can be verified by means of operation TypeCode::equi-
valent(). If the types are not equivalent, the assignment raises a TypeMismatch.

With the help of operation equal(), two DynAny objects are compared for equality. The
result is TRUE if the TypeCodes are equivalent and, recursively, all component DynAnys
are equal.

The operations from_any() and to_any() provide functionality for conversions be-
tween the types any and DynAny. The from_any() operation initializes the value associ-
ated with a DynAny object with the value contained in an any; both TypeCodes must be
equivalent. Vice versa, the to_any() operation creates an any value from a DynAny ob-
ject.

The type() operation returns the TypeCode value associated with a DynAny instance.
This operation is typically invoked when, locally, a DynAny of a complex type was ob-
tained, which now has to be narrowed to the correct dynamic subtype of DynAny, for exam-
ple, DynStruct.

The DynAny interface provides an insert operation for each basic type. For reasons of sim-
plicity, we summarized these operations in the above IDL specification in the form in-
sert_<type>(), where, in a concrete application, <type> has to be replaced by boo-
lean, octet, char, wchar, etc. The target DynAny object must have a TypeCode
equivalent to that of the value to be inserted so that the insertion can be carried out success-
fully without raising an exception. The various insert_<type>_seq operations insert
sequences with elements of type <type>; the operations insert_any() and in-
sert_dyn_any() allow us to nest any and DynAny values arbitrarily.

220 13 Utilizing Interfaces of the DynamicAny Module

The extract counterparts of the insert operations, namely get_<type>() and get_<ty-
pe>_seq(), extract values from DynAny objects. Again, the TypeCodes must be equiva-
lent.

For constructed DynAnys consisting of several components, e.g., DynStruct, DynSe-
quence, DynArray, DynUnion, DynAny, and DynValue objects, the DynAny inter-
face provides operations to iterate through the components. Such a DynAny object consists
of a TypeCode and an ordered collection of embedded DynAnys, which can be inspected
one after the other with the iterator operations. For example, a DynAny for our Time struc-
ture would hold a collection of three DynAny values, one for each member, hours, min-
utes, and seconds.

An important aspect of iterator functionality is that, besides its components and TypeCode,
each DynAny object maintains the notion of a “current position” pointing into its list of
components. Position 0 points to the first component. A DynAny object for our Time struc-
ture would, therefore, address its components by index values between 0 and 2. The specific
index value -1 indicates a position that currently points nowhere. For values that cannot have
a current position, such as DynAny objects for basic types, the index value is fixed at -1. If a
DynAny is initialized with a value that has components, the index is initialized to 0. In our
Time structure example, the initial current position would point to the hours element.

We now turn to the DynAny operations relevant for component iteration. The operation
component_count() returns the number of components of a DynAny on the top level.
For DynAnys without components, which encapsulate basic types, fixed types, or enumer-
ated types, this number is always zero. For sequences, arrays, structures, exceptions, and
value types, the number of elements or members is returned.

The current_component() operation returns the DynAny object for the component at
the current position. Calling the operation for a DynAny that cannot have components raises
a TypeMismatch exception. In the case of a DynAny with components whose current po-
sition is -1, a null reference is returned. Invoking current_component() does not
change the current position; the same holds for all the insert...() or the get...()
operations discussed above.

The next() operation advances the current position to the next component. The operation
returns TRUE while the resulting current position indicates an existing component and
FALSE otherwise. In the latter case, the current position is set to -1. Invoking next() on a
DynAny without components has the same effect. This object’s position is always -1 any-
how.

Operation seek() sets the current position to the value passed as the index argument. The
invocation returns TRUE if the resulting current position indicates a component of the Dyn-
Any and FALSE if index indicates a position that does not correspond to a component. In
the latter case, the current position is set to -1. FALSE is also returned when seek() is in-
voked on a DynAny object without components.

The rewind() operation is equivalent to calling seek(0).

 13.2 DynamicAny API 221

13.2.3 DynFixed Interface

DynFixed is the first subinterface of DynAny that we examine. Its purpose is to dynami-
cally manipulate any values containing fixed-point decimals. The IDL definition only con-
sists of two operations:

module DynamicAny
{
 ...
 local interface DynFixed : DynAny
 {
 string get_value();
 boolean set_value(in string val)
 raises(TypeMismatch, InvalidValue);
 };
};

The get_value() operation returns the value of a DynFixed instance as a string. The
operation uses the IDL string type since IDL does not have a generic type that can repre-
sent fixed types with arbitrary number of digits and arbitrary scale.

With operation set_value() one can set the value of the DynFixed target object. The
val argument must contain a fixed string in the same format as used for IDL fixed-point
literals; however, the trailing d or D may be omitted (see Section 4.3.1.3). If val has more
fractional digits than specified by the scale of the DynFixed object, the extra digits are
truncated. If the truncated value has more digits than expected, an InvalidValue excep-
tion is raised. If the value is not too large, the operation returns TRUE if no truncation was
required, FALSE otherwise. If val does not contain a valid fixed-point literal, the operation
raises a TypeMismatch exception.

13.2.4 DynEnum Interface

The interface DynEnum is also subinterface of interface DynAny. It is used to manipulate
values of enumerated types dynamically. The IDL specification is as follows:

module DynamicAny
{
 ...
 local interface DynEnum : DynAny
 {
 string get_as_string();
 void set_as_string(in string value)
 raises(InvalidValue);
 unsigned long get_as_ulong();
 void set_as_ulong(in unsigned long value)
 raises(InvalidValue);
 };
};

The get_as_string() operation returns the value of the DynEnum as an IDL identifier;
set_as_string() sets the value whose identifier is passed in the value parameter. For
example, using the enumeration

222 13 Utilizing Interfaces of the DynamicAny Module

enum Author { ALEKSY, KORTHAUS, SCHADER };

we could set the value of a DynEnum by invoking set_as_string("ALEKSY"). If the
value argument contains a string that is not a valid IDL identifier for the corresponding
enumerated type, the operation raises an InvalidValue exception. This is also the case if
the operation is invoked on a DynEnum created from an any with a different enumeration;
in that situation, get_as_string() returns an empty string.

The other two operations get_as_ulong() and set_as_ulong() access the values of
a DynEnum on the basis of the value’s ordinal value. Recall that enumerators have ordinal
values 0, 1, 2..., as they appear from left to right in the corresponding IDL definition. If a
value that is outside the range of ordinal values for the enumerated type is passed to
set_as_ulong(), the operation raises InvalidValue.

Finally, recall that the current iterator position of a DynEnum is always -1.

13.2.5 DynStruct Interface

DynStruct is also a subinterface of DynAny. It may be used to dynamically manipulate
structures as well as exceptions. The following parts of module DynamicAny’s IDL speci-
fication are needed:

typedef string FieldName;
struct NameValuePair
{
 FieldName id;
 any value;
};
typedef sequence<NameValuePair> NameValuePairSeq;
struct NameDynAnyPair
{
 FieldName id;
 DynAny value;
};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny
{
 FieldName current_member_name()
 raises(TypeMismatch, InvalidValue);
 CORBA::TCKind current_member_kind()
 raises(TypeMismatch, InvalidValue);
 NameValuePairSeq get_members();
 void set_members(in NameValuePairSeq value)
 raises(TypeMismatch, InvalidValue);
 NameDynAnyPairSeq get_members_as_dyn_any();
 void set_members_as_dyn_any(in NameDynAnyPairSeq value)
 raises(TypeMismatch, InvalidValue);
};

set_members() and get_members() are the central operations that allow us to set or
extract the members in a structure or an exception in the form of a sequence of name/value

 13.2 DynamicAny API 223

pairs. Each member of the structure or the exception is represented by one name/value pair
that describes the name of the member by a string and the value of the member by an
any. For example, our Time structure would be passed and returned as a sequence of three
name/value pairs. The invocation of set_members() raises an exception of type Type-
Mismatch if the passed sequence does not provide a name/value pair for each member of
the structure or the exception or if these pairs do not appear in the order required by the IDL
specification of the structure or the exception. In addition, each sequence element must have
a type equivalent to the TypeCode of the corresponding member; otherwise Invalid-
Value is raised. The operations set_members_as_dyn_any() and get_members_
as_dyn_any() have the same semantics as their any counterparts but accept and return
sequences where the values are of type DynAny instead of any.

The current_member_name() operation returns the name of the member at the current
position in the target DynStruct object. This result may be an empty string since element
names are optional in TypeCodes. If the DynStruct represents an empty exception, the
operation raises a TypeMismatch. If the current position is -1, an InvalidValue ex-
ception is raised.

Finally, operation current_member_kind() returns the TCKind value of the Type-
Code of the member at the current position. The rules for the exceptions that may be raised
are identical to those discussed above for current_member_name() invocations.

13.2.6 DynUnion Interface

The interface DynUnion is a subinterface of DynAny. It is provided for dynamic manipula-
tion of union-based types. Since we question the usefulness of these types, we do not dis-
cuss this interface here. The methods provided by the interface can be seen in Figure 20.
Readers interested in further information are referred to the CORBA specification.

13.2.7 DynSequence Interface

The interface DynSequence is subinterface of the DynAny interface. DynSequence ob-
jects are associated with sequences. Below, the necessary clipping from module Dynamic-
Any’s IDL code is given:

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

local interface DynSequence : DynAny
{
 unsigned long get_length();
 void set_length(in unsigned long len)
 raises(InvalidValue);
 AnySeq get_elements();
 void set_elements(in AnySeq value)
 raises(TypeMismatch, InvalidValue);
 DynAnySeq get_elements_as_dyn_any();
 void set_elements_as_dyn_any(in DynAnySeq value)
 raises(TypeMismatch, InvalidValue);
};

224 13 Utilizing Interfaces of the DynamicAny Module

The get_length() operation returns the current length of the sequence. Correspondingly,
set_length() sets the length of the sequence. Increasing the length of a bounded se-
quence to a value larger than the bound raises an InvalidValue exception. Increasing the
length of a sequence adds new elements at the tail without affecting the values of already ex-
isting elements. Newly added elements are default-initialized. The current position is set to
the first newly added element if the previous current position was -1; otherwise, if the current
position was not -1, this position is not affected. Decreasing the length of a sequence re-
moves elements from the tail. The new current position is always set to -1 except in one case:
if the current position indicates a valid element and that element is not removed when the
length is decreased, then the current position remains unaffected.

The operations get_elements() and get_elements_as_dyn_any() return the e-
lements of the sequence as a sequence of any and DynAny objects, respectively. Their
counterparts are operations set_elements() and set_elements_as_dyn_any(),
which set the elements of a sequence based on the value argument, which is a sequence of
anys and DynAnys, respectively. Existing elements in the DynSequence are removed and
replaced by the elements passed in value. Accordingly, the length of the DynSequence is
set to the length of value. The current position is set to 0 if value has non-zero length and
to -1, otherwise. The operation raises TypeMismatch if value contains one or more ele-
ments whose TypeCode is not equivalent to that of the elements in the DynSequence. If
the length of value exceeds the bounds of a bounded sequence, an exception of type In-
validValue is raised.

13.2.8 DynArray Interface

As to be expected, the DynArray interface, which is also a subinterface of interface Dyn-
Any, provides functionality very similar to DynSequences. The IDL definition has the fol-
lowing form:

module DynamicAny
{
 ...
 local interface DynArray : DynAny
 {
 AnySeq get_elements();
 void set_elements(in AnySeq value)
 raises(TypeMismatch, InvalidValue);
 DynAnySeq get_elements_as_dyn_any();
 void set_elements_as_dyn_any(in DynAnySeq value)
 raises(TypeMismatch, InvalidValue);
 };
};

The get...() and set...() operations return or set the elements of the DynArray.
One difference with regard to DynSequences is that arrays always have a fixed number of
elements, determined by the array dimension. This implies that the any or DynAny se-
quences passed to the set...() operations must contain the same number of elements as
defined in the array dimension; otherwise, an InvalidValue exception is raised. If de-
sired, the array dimension can be obtained by calling the component_count() operation,
which is provided by the supertype DynAny. The new current iterator position after setting

 13.2 DynamicAny API 225

array elements is always zero. If one or more elements in the value have a type that is not
equivalent to the DynArray’s TypeCode, then a set...() invocation raises an excep-
tion of type TypeMismatch.

13.2.9 DynValueCommon Interface

DynValueCommon, a subinterface of DynAny, provides operations supported by both the
DynValue and DynValueBox interfaces. Therefore, it also serves as superinterface for
these two value type-related interfaces. The definition is as follows:

module DynamicAny
{
 ...
 local interface DynValueCommon : DynAny
 {
 boolean is_null();
 void set_to_null();
 void set_to_value();
 };
};

The operation is_null() returns TRUE if the DynValueCommon object represents a null
value type. The set_to_null() operation changes the representation of a DynValue-
Common object to a null value type. If the DynValueCommon represents that null value,
then operation set_to_value() replaces it with a newly constructed value, with its com-
ponents initialized to default values; otherwise, the invocation of this operation has no effect.

13.2.10 DynValue Interface

DynValue is the first of the two interfaces that are not direct subinterfaces of DynAny but
that have DynValueCommon as a direct superinterface. DynValue objects are associated
with non-boxed value types. Here is the relevant part of module DynAny:

local interface DynValue : DynValueCommon
{
 FieldName current_member_name()
 raises(TypeMismatch, InvalidValue);
 CORBA::TCKind current_member_kind()
 raises(TypeMismatch, InvalidValue);
 NameValuePairSeq get_members() raises(InvalidValue);
 void set_members(in NameValuePairSeq value)
 raises(TypeMismatch, InvalidValue);
 NameDynAnyPairSeq get_members_as_dyn_any()
 raises(InvalidValue);
 void set_members_as_dyn_any(in NameDynAnyPairSeq value)
 raises(TypeMismatch, InvalidValue);
};

The DynValue interface can represent both null and non-null value types. A DynValue
object representing a null value type has no components and a current position of -1. For a
DynValue object representing a non-null value type, the DynValue’s components com-

226 13 Utilizing Interfaces of the DynamicAny Module

prise the public and private members of the value type, including those inherited from
concrete supertype value types, in the order of definition.

The operations on the DynValue interface generally have semantics equivalent to the same
operations on DynStruct (see Section 13.2.5). When invoking get_members() or
get_members_as_dyn_any() on a DynValue object representing a null value type,
an InvalidValue exception is raised. When invoked on such a “null” DynValue object,
set_members() and set_members_as_dyn_any() convert the DynValue to the
corresponding non-null value type.

13.2.11 DynValueBox Interface

The second subinterface of DynValueCommon is DynValueBox; its purpose is to ma-
nipulate boxed value types dynamically:

local interface DynValueBox : DynValueCommon
{
 any get_boxed_value() raises(InvalidValue);
 void set_boxed_value(in any boxed)
 raises(TypeMismatch, InvalidValue);
 DynAny get_boxed_value_as_dyn_any()
 raises(InvalidValue);
 void set_boxed_value_as_dyn_any(in DynAny boxed)
 raises(TypeMismatch);
};

Similar to the DynValue interface discussed above, the DynValueBox interface can rep-
resent both null and non-null value types. A DynValueBox object representing a null value
type has no components and a current position of -1. For a DynValueBox object represent-
ing a non-null value type, the DynValueBox has a single component of the boxed type.

The get_boxed_value() and the get_boxed_value_as_dyn_any() operations
return the boxed value as an any and a DynAny, respectively. An InvalidValue excep-
tion is raised if the DynValueBox object represents a null value type. The set_box-
ed_value() and set_boxed_value_as_dyn_any() operations replace the boxed
value with the specified argument value. If the type of the passed any or DynAny argument
is not equivalent to the DynValueBox type, the operation raises TypeMismatch. In addi-
tion, if the argument does not contain a legal value, an InvalidValue exception is raised.
When invoked on a “null” DynValueBox object, the set...() operations convert the
DynValueBox to a non-null value type.

13.3 Usage of the DynamicAny API in Java

The Java mapping of the DynamicAny API does not show any specific characteristics that
would need detailed discussion. We, instead, use an expandable example to demonstrate how
this API can be practically employed in a distributed Java application. To that purpose, we
implement a server that can accept arbitrary Any values, extract their components dynami-
cally by means of the DynamicAny interfaces, and display the results on the server console.

 13.3 Usage of the DynamicAny API in Java 227

To complete the application, we develop a client that also manages without the static IDL
definition of a complex type, is able to define it dynamically, builds and assembles its value
with the help of the DynamicAny API, converts it to an Any value, and sends it to the
server for server-side processing.

13.3.1 Implementing Servant and Server Application

We base this example on the introductory example at the beginning of this chapter. The IDL
definition we use is identical to the one in Section 13.1; the only difference is that, now, we
do not provide the static definition of the Time structure. Hence, we start from the following
IDL file:

// AnyServer.idl

module AnyTest
{
 interface AnyServer
 {
 void display_any(in any a);
 };
};

One should store this simplified version AnyServer.idl in the \Examples\DynAny
directory on one’s server and client hosts and compile it as usual from the respective Ser-
ver and Client subdirectories.

Our server application, which we, again, store in a file AServer.java, is almost identical
to the server in the previous example; therefore, one can first copy the original server to the
directory \Examples\DynAny\YourORB\Server on the server host. The only code
modification necessary concerns the construction of the AnyServerImpl object, which is
carried out immediately after the ORB initialization. For reasons to be discussed below, it is
favorable to provide the variable orb as an argument to the servant constructor:

AnyServerImpl a_impl = new AnyServerImpl(orb);

We now turn to the implementation of the servant, which is named as usual and should be
stored as file AnyServerImpl.java in directory \Examples\DynAny\Your-
ORB\Server\AnyTest. Since we have no static information on the type in the Any ob-
ject passed to the display method, the TypeCode must be extracted and analyzed:

// AnyServerImpl.java

package AnyTest;

import org.omg.CORBA.*;
import org.omg.DynamicAny.*;
import static java.lang.System.*;

public class AnyServerImpl extends AnyServerPOA {
 private DynAnyFactory dynFactory;
 public AnyServerImpl(ORB orb) {

228 13 Utilizing Interfaces of the DynamicAny Module

 try {
 dynFactory = DynAnyFactoryHelper.narrow(
 orb.resolve_initial_references("DynAnyFactory"));
 } catch (Exception ex) {
 out.println("Exception: " +
 ex.getMessage());
 exit(1);
 }
 }
 public void display_any(Any any) {
 try {
 TypeCode tc = any.type();
 while (tc.kind() == TCKind.tk_alias)
 tc = tc.content_type();
 TCKind kind = tc.kind();
 if (kind == TCKind.tk_short)
 out.println(any.extract_short());
 else if (kind == TCKind.tk_long)
 out.println(any.extract_long());
 else if (kind == TCKind.tk_ulong)
 out.println(any.extract_ulong());
 else if (kind == TCKind.tk_string)
 out.println("\""
 + any.extract_string() + "\"");
 // ... rest of basic types here
 else if (kind == TCKind.tk_except
 || kind == TCKind.tk_struct) {
 org.omg.DynamicAny.DynStruct dynStruct =
 (org.omg.DynamicAny.DynStruct)
 dynFactory.create_dyn_any(any);
 if (dynStruct.component_count() != 0)
 do {
 out.print(
 dynStruct.current_member_name() + " = ");
 display_any(
 dynStruct.current_component().to_any());
 } while (dynStruct.next());
 }
 // ... rest of complex types here
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
}

This servant has no static type information concerning the values that are passed to its
method display_any() at run-time. The argument any might contain a value of an arbi-
trarily complex user-defined type. Therefore, to decompose that unknown value, usage of the
DynamicAny API is inevitable. Recall that DynAny objects can only be used locally and
that it is not possible to pass them directly from a client to a remote server. Thus, in the body
of method display_any(), we first of all have to create a DynAny object from the re-
ceived Any object; subsequently that DynAny’s components can then be extracted and dis-
played. In order to generate the local DynAny, we need a DynAnyFactory object. The

 13.3 Usage of the DynamicAny API in Java 229

standard procedure to obtain such a factory is to invoke the ORB method resolve_init-
ial_references() with the string "DynAnyFactory" as the argument. The neces-
sity of calling a method on the ORB is the reason for the change in the server application
mentioned above.

The servant’s true functionality is encapsulated in method display_any(). In principle,
we have to test for all existing IDL types. For reasons of clarity, however, we only deal with
several basic types and, as an example for complex types, show the way to extract a struct
or an exception.

In the first step, we proceed as in Section 13.1 and extract the any’s TypeCode with the
invocation any.type(). Then, recursively, by invoking content_type() in the whi-
le statement, we inspect this TypeCode, which could be an alias for some user-defined
type, until we have reached the basic types, which may no longer be decomposed.

The names and values of these bottom level components shall now be displayed. We imple-
ment an if statement analogous to the simple AnyServerImpl in Section 13.1 and com-
pare the tc.kind() value to TCKind.tk_short for a short, to TCKind.tk_long
for a long, etc. If we find the component’s type and if this type is a basic type, we print the
corresponding value, which we obtain by calling the respective extract method, e.g.,
any.extract_short(). For reasons of brevity, we do without any type-specific format-
ting for that value.

The task to decompose a complex type is more interesting. In the example, we demonstrate
how that step may be implemented for a structure. As already mentioned above, we first have
to create a DynStruct object from the received Any. At this point, we know from our type
inspection that we have to decompose a structure. Therefore, we call the factory method
create_dyn_any() to create a new DynAny object, which is initialized with the names
and values of the structure embedded in the any variable. Immediately following construc-
tion, we cast the dynamic type of the result to DynStruct. We can now determine the
number of members in the structure by invoking component_count() and, if it is not
empty, iterate through the different positions of the structure by repeatedly invoking
next() on the DynStruct object. The name of the member at the current position is
available through a call of current_member_name() and the component at the current
position is returned as a DynAny if we invoke current_component(). In order to print
the component’s value, we simply invoke display_any() recursively after having con-
verted the DynAny to an Any with a preceding call of to_any().

This completes the discussion of the server-side implementation. One can now compile and
start the server application as usual and copy the IOR string to the Client directory on the
client hosts.

13.3.2 Implementing the Client Application

We finally turn to the client side of our application, which is here somewhat more complex.
The file AClient.java should be stored on one’s client hosts in directory \Examp-
les\DynAny\YourORB\Client.

230 13 Utilizing Interfaces of the DynamicAny Module

// AClient.java

import AnyTest.*;
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.DynamicAny.*;
import static java.lang.System.*;

public class AClient {
 private ORB orb;
 private void initializeORB(String[] args) {
 ... as above in Section 8.3
 }
 private org.omg.CORBA.Object getRef(String refFile) {
 ... as above in Section 8.3
 }
 public AClient(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 AnyServer as = AnyServerHelper.narrow(obj);
 DynAnyFactory dynFactory =
 DynAnyFactoryHelper.narrow(
 orb.resolve_initial_references(
 "DynAnyFactory"));
 TypeCode time_tc =
 orb.create_struct_tc(
 "IDL:AnyTest/AnyServer/Time:1.0", "Time",
 new StructMember[] {
 new StructMember("hours",
 orb.get_primitive_tc(TCKind.tk_ulong),
 null),
 new StructMember("minutes",
 orb.get_primitive_tc(TCKind.tk_ulong),
 null),
 new StructMember("seconds",
 orb.get_primitive_tc(TCKind.tk_ulong),
 null)
 });
 org.omg.DynamicAny.DynStruct dynStruct =
 (org.omg.DynamicAny.DynStruct)
 dynFactory.create_dyn_any_from_type_code(
 time_tc);
 org.omg.DynamicAny.DynAny hours =
 dynFactory.create_dyn_any_from_type_code(
 orb.get_primitive_tc(TCKind.tk_ulong));
 hours.insert_ulong(12);
 org.omg.DynamicAny.DynAny minutes =
 dynFactory.create_dyn_any_from_type_code(
 orb.get_primitive_tc(TCKind.tk_ulong));
 minutes.insert_ulong(0);
 org.omg.DynamicAny.DynAny seconds =
 dynFactory.create_dyn_any_from_type_code(
 orb.get_primitive_tc(TCKind.tk_ulong));

13.3 Usage of the DynamicAny API in Java 231

 seconds.insert_ulong(0);
 NameDynAnyPair[] members = new NameDynAnyPair[] {
 new NameDynAnyPair("hours", hours),
 new NameDynAnyPair("minutes", minutes),
 new NameDynAnyPair("seconds", seconds),
 };
 dynStruct.set_members_as_dyn_any(members);
 Any a = dynStruct.to_any();
 as.display_any(a);
 hours.destroy();
 minutes.destroy();
 seconds.destroy();
 dynStruct.destroy();
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "AnyServer.ref";
 new AClient(args, refFile);
 }
}

Known elements already discussed in the servant implementation, for example, how to ob-
tain a reference to a DynAnyFactory object, are not repeated in the following.

A new aspect is the dynamic generation of a user-defined TypeCode and the creation of a
default-initialized DynStruct for that type, which is demonstrated at the beginning of the
application. This way of proceeding is followed in subsequent chapters when we use the Dy-
namic Invocation Interface. We now compose the Time structure dynamically at run-time
without having provided an IDL definition for it. Several ORB methods that all follow a simi-
lar pattern are available to create a new TypeCode. Here, we invoke the method cre-
ate_struct_tc(), which returns the TypeCode for an IDL struct. This method has
three in parameters.

The first parameter is a RepositoryId, which specifies the new type’s unique identifier
for the Interface Repository. The standard naming schema is "IDL:modulename/
interfacename/typename:1.0"; for our example, we use "IDL:AnyTest
/AnyServer/Time:1.0".

The second parameter is the unqualified name of the type that is equal to the last part
of the RepositoryId preceding the version number. In our example, that name is
"Time".

The third parameter is a sequence of name/type/type triples, which define the ele-
ments of the structure. In Java, these triples are represented through objects of class
StructMember, having the declaration

232 13 Utilizing Interfaces of the DynamicAny Module

package org.omg.CORBA;

public final class StructMember
 implements org.omg.CORBA.portable.IDLEntity {
 public java.lang.String name;
 public org.omg.CORBA.TypeCode type;
 public org.omg.CORBA.IDLType type_def;
}

In the Java ORB interface, method create_struct_tc() is specified in this way:

 public abstract TypeCode create_struct_tc(
 String id, String name, StructMember[] members);

With the help of these elements, we create time_tc, a new TypeCode representing the
Time structure with its three components hours, minutes, and seconds, each of type
unsigned long. A call of orb.get_primitive_tc(TCKind.tk_ulong) provi-
des the corresponding TypeCode, needed when we construct the StructMember objects.

Now, the next step is to create a DynStruct object for that new type. Here, we simply in-
voke the factory method create_dyn_any_from_type_code() and immediately cast
the resulting DynAny’s dynamic type to DynStruct. The object dynStruct is at this
point default-initialized. In order to insert the desired Time value, we first create a DynAny
object for each of the three structure members by, again, invoking the factory method crea-
te_dyn_any_from_type_code(). This time, the correct type for the argument is TC-
Kind.tk_ulong since all members are of IDL type unsigned long. After having cre-
ated them, we call insert_ulong() to insert the correct values into the DynAny objects
hours, minutes, and seconds. These objects still have to be inserted into the object
dynStruct in order to replace its default values.

In Section 13.2.5, we saw that one way to set values in a DynStruct object is the invoca-
tion of method set_members_as_dyn_any(). The method expects an array with ele-
ments of type NameDynAnyPair, which provides the names and the values for the mem-
bers of the object. In the example, we create the NameDynAnyPairs with the obvious
names and the DynAny objects we just constructed. After having called set_members_
as_dyn_any(), the DynStruct’s construction is completed. It has the correct type, pro-
vided by time_tc, and the correct value, provided by members.

The object dynStruct can now fulfill its central purpose, namely, to transmit its content to
the server during an invocation of the remote method display_any(). Since dyn-
Struct is locality-constrained to the client side, we convert it to an Any with a call of
to_any() and then invoke the server method with this Any object as an argument. To en-
sure standard conformity, we finally destroy all newly created DynAny objects via de-
stroy().

After having compiled the clients, each execution should produce the following output on the
server console:

hours = 12
minutes = 0
seconds = 0

 13.4 Exercises 233

In subsequent chapters, we go into more depth in order to understand the advantages of the
DynAny concept, especially when invoking operations dynamically through the DII.

13.4 Exercises

1. Enhance the implementation of the servant class AnyServerImpl so that several addi-
tional IDL types (sequences, enumerations, arrays, etc.) can be recognized and displayed.

2. Write a simple but complete implementation in order to test the possibilities offered by
the new servant.

14 Dynamic Invocation Interface

In Section 3.4.5, we briefly covered CORBA’s Dynamic Invocation Interface, which was
then discussed in more detail in Section 6.6. The DII enables CORBA clients to invoke op-
erations dynamically without knowing the IDL type of the server operations at compile-time.
Clients using the DII, therefore, do not rely on the stub code generated by the IDL compiler.
In the context of the DynAny examples of the last chapter, it was already mentioned that it is
thus possible to develop very generic and flexible applications without the restrictions of
compile-time conditions. As an example, it might be necessary to build a client application
even before the corresponding server interfaces are defined, requiring that the invocations of
server-side operations be constructed dynamically at run-time. Typical scenarios for such
procedures might be generic bridges, object browsers, or interpreters for script languages.

In these cases, the client normally obtains knowledge on the interface names and operation
descriptions, needed to execute a dynamic invocation by consulting the Interface Repository.
This kind of type information can be registered in the IR with the help of a command-line
tool. Accessing the information in the IR, the construction of a user-defined type can be dis-
covered dynamically. Since no stub code is available, user-defined types have to be repre-
sented and manipulated dynamically in the clients; TypeCodes and DynAnys provide the
means to do so. The information and the details for the operation are assembled with the help
of a local Request object. Then, in the standard case, method invoke() is called on that
object, triggering the actual dynamic invocation. In principle, the following scheme is ap-
plied:

creating a Request object;

setting the in, inout, and out parameters;

setting the return type;

setting a list of user exception TypeCodes (optional);

executing the dynamic invocation;

testing for exceptions (optional); and

extracting the return value and values of the inout and out parameters.

In this chapter, practical application of dynamic invocations is explained with the aid of sev-
eral simple examples. Usage of the Interface Repository is not included explicitly, nor is dy-
namic exception handling demonstrated. The first example is based on the introductory
Counter application, developed in Chapter 7. Differing from the static approach followed
there, it is now shown how a client can dynamically generate and invoke server methods.
CORBA’s standard communication model (synchronous and blocking) is followed. For addi-
tional explanations, the well-known TimeServer examples are re-implemented dynami-
cally; in this context, the DynAny objects introduced in the preceding chapter are employed.
Finally, an example for deferred synchronous CORBA communication is presented.

236 14 Dynamic Invocation Interface

14.1 Dynamic Counter Client

In the first DII example, we go back to the Counter application discussed in Chapter 7.
The IDL interface of the Counter object was presented in the file Counter.idl in Sec-
tion 7.15 and is not modified. We also reuse the servant implementation Counter-
Impl.java from Sections 7.5 and 7.15. One should, now, create a directory \Examp-
les\DIICounter on the server and client hosts, copy Counter.idl to the server host,
and create the usual directory structure (see Sections 7.4 and 7.8). According to our assump-
tion, the Counter’s IDL definition is not available on the clients. After setting the neces-
sary environment variables, the IDL file can be translated; one should also copy the servant
implementation CounterImpl.java presented in Section 7.5 to the directory \Examp-
les\DIICounter\YourORB\Server\Count. The server application itself is also or-
ganized completely analogous to our earlier examples. Store it in directory \Examples\
DIICounter\YourORB\Server and compile it as usual.

// Server.java

import Count.*;
import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.System.*;

public class Server {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private void putRef(org.omg.CORBA.Object obj,
 String refFile) {
 ... as above in Section 8.2
 }
 public Server(String[] args, String refFile) {
 try {
 initializeORB(args);
 CounterImpl c_impl = new CounterImpl();
 Counter c = c_impl._this(orb);
 putRef(c, refFile);
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "Counter.ref";
 new Server(args, refFile);
 }
}

 14.1 Dynamic Counter Client 237

Of real interest is only the client application, which uses dynamic invocations and does not
have access to the Counter’s stub code generated by the IDL compiler. To that purpose,
one should create the file DIIClient.java below and store it in directory \Examp-
les\DIICounter\YourORB\Client on the client hosts.

// DIIClient.java

import java.awt.GridLayout;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import javax.swing.*;
import org.omg.CORBA.*;
import static java.lang.System.*;

public class DIIClient extends JPanel {
 private ORB orb;
 private org.omg.CORBA.Object obj;
 private void initializeORB(String[] args) {
 ... as above in Section 7.13
 private org.omg.CORBA.Object getRef(String refFile) {
 ... as above in Section 7.13
 }
 private int value() {
 Request req = obj._request("_get_value");
 req.set_return_type(
 orb.get_primitive_tc(TCKind.tk_long));
 req.invoke();
 Any any = req.return_value();
 return any.extract_long();
 }
 private void createGUI() {
 setLayout(new GridLayout(2, 1));
 JPanel p = new JPanel();
 final JLabel value;
 p.add(new JLabel("Counter value: ", JLabel.RIGHT));
 p.add(value = new JLabel(String.valueOf(value())));
 add(p);
 p = new JPanel();
 JButton inc, dec;
 p.add(inc = new JButton("Increment"));
 p.add(dec = new JButton("Decrement"));
 add(p);
 inc.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Request req = obj._request("inc");
 req.invoke();
 value.setText(String.valueOf(value()));
 }
 });
 dec.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Request req = obj._request("dec");
 req.invoke();
 value.setText(String.valueOf(value()));

238 14 Dynamic Invocation Interface

 }
 });
 }
 public DIIClient(String[] args, String refFile) {
 initializeORB(args);
 obj = getRef(refFile);
 createGUI();
 }
 public static void main(String[] args) {
 try {
 String refFile = "Counter.ref";
 JFrame f = new JFrame("DII Counter Client");
 f.getContentPane().add(new DIIClient(args,
 refFile));
 f.pack();
 f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 f.setVisible(true);
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
}

The method main() is declared analogous to the example GUI client in Section 7.13;
methods initializeORB() and getRef() are unmodified. The createGUI() meth-
od, again, creates the user interface; but, it also contains the dynamic invocations in which
we are especially interested. As above in 7.13, two buttons for incrementing and decremen-
ting the current Counter value are created, together with the corresponding Action-
Listeners that initiate the invocation of the remote methods inc() and dec().

The essential difference to the client implementation in Section 7.13 lies in the remote in-
crement and decrement operation invocations. To access the current Counter value, its
own method value() is declared since, in the dynamic case, this determination is more
complex than in the case of a static invocation. We now turn to the implementation of the
methods inc(), dec(), and value().

First, the org.omg.CORBA.Object method _request() described in Section 6.6.6 is
invoked to create a pre-initialized Request object. Using this method, dynamic invocations
of operations without arguments can be prepared by simply passing the name of the opera-
tion to invoke as a String. If arguments have to be passed during a dynamic invocation,
one of the two _create_request() methods must be used (see Section 6.6.6).

The reference to the new Request object is stored in the variable req. We strongly rec-
ommend using such a Request object only for one single invocation since, for several ORB
implementations (e.g., JacORB and OpenORB), repeated usage results in a run-time error. In
our example, the statements preparing the inc() and dec() invocations are therefore

Request req = obj._request("inc");

and

 14.2 Dynamic TimeServer Clients 239

Request req = obj._request("dec");

Since both methods do not return a result value, nothing else needs to be done and the invo-
cation can be initiated by means of a

req.invoke();

statement. As a result, the client blocks until the respective invocation is completed. Follow-
ing the inc() and dec() invocations, the display of the Counter value in the GUI’s
JLabel (also named value) needs to be updated. The necessary access to the Counter’s
readonly attribute value is more complex and is therefore incorporated into a separate
method value(), whose body is declared as follows:

Request req = obj._request("_get_value");
req.set_return_type(
 orb.get_primitive_tc(TCKind.tk_long));
req.invoke();
Any any = req.return_value();
return any.extract_long();

On the IDL level, readonly attributes are equivalent to get operations, whose names are
composed of the prefix _get_ followed by the attribute’s name. (For attributes, which are
not specified readonly and may therefore also be set, a set method, whose name is pre-
fixed by _set_, is generated as well.) Thus, the string "_get_value" is passed when the
Request object for dynamically getting the attribute value is created. This process con-
tains a potential source of error because the IDL compiler maps the readonly attribute
value to the Java method value(), as seen on inspection of the operations interface
CounterOperations.java; the string argument "_get_value" therefore might not
meet one’s expectations.

Since the get operation returns a value, the type of that return value must be set for the Re-
quest object. This is achieved by invoking method set_return_type() with an
org.omg.CORBA.TypeCode argument (see Section 6.5). Here, we expect a return value
of IDL type long. We therefore pass the TypeCode, which is created with an invocation of
the ORB operation get_primitive_tc(), called with the constant TCKind.tk_long
as an argument.

Subsequently, the Counter servant’s method value() is invoked dynamically with the
statement req.invoke(). For retrieving the return value of an invocation, the Request
operation return_value() is available; it returns an Any result. We extract the value
stored in the Any instance by using the method extract_long(), which returns a value
of Java type int. (This is also the return type of method value().)

14.2 Dynamic TimeServer Clients

To further deepen understanding of dynamic operation invocations following the synchro-
nous and blocking communication model, we, again, address the different versions of the
TimeServer example introduced in Chapter 9. We reuse the server implementations but

240 14 Dynamic Invocation Interface

modify the clients such that they use the DII in order to invoke the server-side methods dy-
namically.

14.2.1 TimeServer Version 1

The first variant of the TimeServer, presented in Section 9.1, is characterized by an IDL
definition that manages information on hours, minutes, and seconds in three readonly at-
tributes, each of type unsigned long. On the server side, we can reuse this IDL file,
TimeServer.idl, without any modification. The TimeServer’s implementation, Ti-
meServerImpl.java, as well as the implementation of the server application, Time-
Server.java, can also be adapted identically to Section 9.1. One should follow the stan-
dard naming pattern for directories on the server and client hosts and start with a base direc-
tory \Examples\DIITimeServer\1. For the TimeServer examples in the following
Subsections 14.2.2 – 14.2.5, the names of the base directories are \Examples\DIITime-
Server\2 through \Examples\DIITimeServer\5, accordingly.

With the exception of the dynamic invocations, the implementation of the client application
is identical to the TClient discussed in Section 9.1. The only difference pertains to the
constructor, which now has to have a declaration analogous to the following:

 public TClient(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 Request req = obj._request("_get_hours");
 req.set_return_type(
 orb.get_primitive_tc(TCKind.tk_ulong));
 req.invoke();
 int h = req.return_value().extract_ulong();
 req = obj._request("_get_minutes");
 req.set_return_type(
 orb.get_primitive_tc(TCKind.tk_ulong));
 req.invoke();
 int m = req.return_value().extract_ulong();
 req = obj._request("_get_seconds");
 req.set_return_type(
 orb.get_primitive_tc(TCKind.tk_ulong));
 req.invoke();
 int s = req.return_value().extract_ulong();
 out.println("Time on Server: " + h
 + ((m < 10)? ":0": ":") + m
 + ((s < 10)? ":0": ":") + s);
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
}

In the client application, the values of the three readonly attributes hours, minutes,
and seconds of the server application’s TimeServer object have to be determined
through dynamic invocations. During discussion of the value() method in Section 14.1,
we saw how read access to readonly attributes may be handled dynamically. The follow-

 14.2 Dynamic TimeServer Clients 241

ing four statements for getting the hours value repeat that procedure; they can be directly
applied to the case of the two other attributes.

Request req = obj._request("_get_hours");
req.set_return_type(orb.get_primitive_tc(TCKind.tk_ulong));
req.invoke();
int h = req.return_value().extract_ulong();

First, a Request object is created through an invocation of _request() on the server ob-
ject. The name of the operation to be invoked dynamically has to be passed as an argument.
According to the rules discussed above, this name is simply _get_hours (although the at-
tribute hours is mapped to a Java method hours() in the operations interface generated
by the IDL compiler). In the next step, the return type of the operation must be set. Then, the
dynamic invocation occurs when

req.invoke();

is executed. The return result is obtained as an Any by calling return_value() on the
Request object req. Finally, the desired int value is extracted from the Any instance by
an invocation of extract_ulong(). Recall that the IDL type unsigned long is map-
ped to the Java type int.

14.2.2 TimeServer Version 2

The second variant of the TimeServer, which was analyzed in Section 9.1, differs from
variant one only in that the readonly attributes hours, minutes, and seconds are re-
placed by three operations hours(), minutes(), and seconds(), returning a value of
type unsigned long. Since the Java mapping of the IDL definition of this second variant
is exactly identical to the mapping for variant one, the servant implementation, Time-
ServerImpl.java, as well as the server application, TServer.java, can be reused di-
rectly and copied from variant one or from Section 9.1.

Now, one could expect that the dynamic client can also be copied from the example just trea-
ted above in Section 14.2.1. However, a slight adaptation is needed since the strings passed
to the _request() operations are no longer built according to the rules for attribute ac-
cess. They simply correspond to the names of the IDL operations. In the constructor of the
client application the lines

Request req = obj._request("_get_hours");
...
req = obj._request("_get_minutes");
...
req = obj._request("_get_seconds");

therefore have to be replaced by

Request req = obj._request("hours");
...
req = obj._request("minutes");
...
req = obj._request("seconds");

242 14 Dynamic Invocation Interface

No further adjustments are necessary. While the Java clients for variants one and two were
identical in the static case, some differences are to be noted in the dynamic case.

14.2.3 TimeServer Version 3

The third variant of the TimeServer and the corresponding implementation was intro-
duced in Section 9.2. For our next example of a client dynamically invoking server methods,
the IDL definition TimeServer.idl and the servant implementation TimeServer-
Impl.java can be retained unchanged. The server application TServer.java can also
be reused as it was discussed in Section 9.1. One should copy these three files from \Ex-
amples\TimeServer\3 and the respective subdirectories.

The first variant of the TimeServer example used readonly attributes; in the second
variant, three operations with empty parameter lists were used. Now, one single operation
get_time() with a void return type and three out parameters, hours, minutes, and
seconds, each of type unsigned long, is defined. The parameters transmit the time
data from the server object back to the invoking client.

There are various ways to invoke an operation dynamically and to return its results in the
out parameters. In the following, we discuss three alternative ways, all of which are modifi-
cations of the client application TClient.java presented in Section 9.1. These modifica-
tions only affect the TClient constructor. Here is the first alternative:

public TClient(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 // Start: Alternative 1
 Request req = obj._request("get_time");
 Any hany = req.add_out_arg(),
 many = req.add_out_arg(),
 sany = req.add_out_arg();
 hany.type(orb.get_primitive_tc(TCKind.tk_ulong));
 many.type(orb.get_primitive_tc(TCKind.tk_ulong));
 sany.type(orb.get_primitive_tc(TCKind.tk_ulong));
 req.set_return_type(
 orb.get_primitive_tc(TCKind.tk_void));
 // End: Alternative 1
 req.invoke();
 int hours = hany.extract_ulong(),
 minutes = many.extract_ulong(),
 seconds = sany.extract_ulong();
 out.println("Time on Server: " + hours
 + ((minutes < 10)? ":0": ":") + minutes
 + ((seconds < 10)? ":0": ":") + seconds);
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
}

After initializing the ORB and getting the reference to the server object, we next create a new
Request object. As before, the Object method _request() is called and the name of

 14.2 Dynamic TimeServer Clients 243

the operation to be invoked dynamically, here "get_time", is passed. The operation
get_time() has three out parameters. By default, the parameter list of a Request ob-
ject created by means of _request() is empty. Therefore, the necessary arguments have to
be subsequently provided with the add_out_arg() invocations. A side effect of these in-
vocations is that three Any instances containing the results of the dynamic invocation are
created. By calling type(), we set the type information for the Any objects appropriately
so that they each can store time values of IDL type unsigned long. Since operation
get_time() has a void return type, we still have to set that type in the familiar way, by
calling set_return_type(orb.get_primitive_tc(TCKind.tk_void)), be-
fore we are, finally, able to call invoke() on the Request object. To access the values of
the out parameters after the dynamic invocation is complete, we simply issue a call of ex-
tract_ulong() on the Any instances that we earlier obtained from the three invocations
of add_out_arg(). As before, we must bear in mind that these operations return the re-
spective value as a Java int. (To complement the above explanations one can also consult
the description of the pseudo interface Request given in Section 6.6.3.)

Now, we turn to alternative two for implementing the TClient constructor. It is only nec-
essary to replace the part between the two line comments // Start: Alternative 1
and // End: Alternative 1 by the following piece of code.

// Start: Alternative 2
Any hany = orb.create_any(),
 many = orb.create_any(),
 sany = orb.create_any();
hany.type(orb.get_primitive_tc(TCKind.tk_ulong));
many.type(orb.get_primitive_tc(TCKind.tk_ulong));
sany.type(orb.get_primitive_tc(TCKind.tk_ulong));
Request req = obj._request("get_time");
NVList arglist = req.arguments();
arglist.add_value("", hany, ARG_OUT.value);
arglist.add_value("", many, ARG_OUT.value);
arglist.add_value("", sany, ARG_OUT.value);
req.set_return_type(orb.get_primitive_tc(
 TCKind.tk_void));
// End: Alternative 2

Differing from the last alternative, we now do not use the add_out_arg() operations to
provide arguments for the parameter list of the Request object. Instead, we directly ma-
nipulate that list. Recall that, in the Request interface, the parameter list is defined as a
readonly attribute of type NVList, which is named arguments, and that this attribute
is mapped in Java to a method arguments() (see Sections 6.6.2 and 6.6.3). Therefore, we
invoke arguments() on the Request object to obtain a reference to the NVList and
later we populate that parameter list with NamedValues, which represent the arguments to
the operation to be invoked dynamically.

Creation of the actual arguments is started by calling the ORB method create_any(),
which, again, provides three Any instances. The type information for these Anys is then set
as before. Afterwards, actual arguments are inserted into the argument list in the order that
corresponds to the parameter declarations in the IDL specification of the operation. To that
purpose, the method add_value() is called with three arguments that entirely describe an

244 14 Dynamic Invocation Interface

operation’s parameter (see Section 6.6.2). The first argument specifies the parameter name,
which is insignificant here, so we left it empty. For reasons of clarity, one could use the pa-
rameter names of the IDL definition, namely hours, minutes, and seconds. However,
the client has no knowledge of the IDL definition and its names. The second argument is the
Any, which shall contain the returned parameter value. The third argument is the directional
flag for the parameter value (see Section 6.6.1). On the Java level, these constants are named
org.omg.CORBA.ARG_IN.value, org.omg.CORBA.ARG_INOUT.value, or, as in
this case, org.omg.CORBA.ARG_OUT.value. Afterwards, the return type is set as be-
fore.

To complete this example, we describe a third alternative for the third TimeServer vari-
ant.

// Start: Alternative 3
Any hany = orb.create_any(),
 many = orb.create_any(),
 sany = orb.create_any(),
 rany = orb.create_any();
hany.type(orb.get_primitive_tc(TCKind.tk_ulong));
many.type(orb.get_primitive_tc(TCKind.tk_ulong));
sany.type(orb.get_primitive_tc(TCKind.tk_ulong));
rany.type(orb.get_primitive_tc(TCKind.tk_void));
NamedValue res = orb.create_named_value("", rany,
 ARG_OUT.value);
NVList arglist = orb.create_list(3);
arglist.add_value("", hany, ARG_OUT.value);
arglist.add_value("", many, ARG_OUT.value);
arglist.add_value("", sany, ARG_OUT.value);
Request req = obj._create_request(null, "get_time",
 arglist, res);
// End: Alternative 3

In this variant, we do not create the Request object with the easy to use _request()
method, which only needs minimal information, specifically the name of the operation to be
invoked. Instead, we use the more complex _create_request() method (see Section
6.6.6). One advantage of this method is that the queries that, depending on the ORB’s im-
plementation, _request() might automatically execute on the Interface Repository and
that might negatively influence performance are avoided. For developers, the construction of
the Request object turns out to be more complex. The _create_request() method
that we invoke here expects four arguments that first have to be suitably prepared. Argument
one specifies an invocation context, a possibility we do not utilize; therefore, that value is set
to null. Argument two provides the name of the operation to be invoked as a string. The
third argument is an NVList specifying the actual arguments. We create that NVList ob-
ject with the ORB operation create_list(), whose argument is the number of argu-
ments in the list; in our example, that number is 3. As above, we insert appropriately initial-
ized Anys into the NVList object. The fourth argument is a NamedValue object serving
as a container for the return value. We create this argument with the ORB method cre-
ate_named_value(). The necessary arguments are a name (not needed here), an Any
instance to be used as a container (here the additionally created object rany), and a direc-
tional flag (here ARG_OUT.value). Once the Request object is created, we can continue

 14.2 Dynamic TimeServer Clients 245

with the invocation, the extraction, and the display of the results as in the previous alterna-
tives.

14.2.4 TimeServer Version 4

The fourth TimeServer example demonstrates how TypeCodes and DynAnys are em-
ployed when a dynamic client requires user-defined types. One should prepare the implemen-
tation by first copying version four of the TimeServer.idl definition and the corre-
sponding servant implementation, TimeServerImpl.java, from Section 9.2 as well as
the file TServer.java from Section 9.1 into the respective subdirectories of \Examp-
les\DIITimeServer\4. Recall that, in this version of the TimeServer interface, a
parameter-free operation get_time() is declared, using a structure Time as its return
type. That structure is defined in the same interface; its definition simply consists of three
unsigned long elements hours, minutes, and seconds. Again, only the constructor
of the class TClient needs to be adapted; the rest of the implementation can be reused
from the client in Section 9.2.

public TClient(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 Request req = obj._request("get_time");
 DynAnyFactory dynFactory =
 DynAnyFactoryHelper.narrow(
 orb.resolve_initial_references("DynAnyFactory"));
 TypeCode time_tc = orb.create_struct_tc(
 "IDL:Timer/TimeServer/Time:1.0", "Time",
 new StructMember[] {
 new StructMember("hours",
 orb.get_primitive_tc(TCKind.tk_ulong),
 null),
 new StructMember("minutes",
 orb.get_primitive_tc(TCKind.tk_ulong),
 null),
 new StructMember("seconds",
 orb.get_primitive_tc(TCKind.tk_ulong),
 null)
 });
 req.set_return_type(time_tc);
 req.invoke();
 Any res = req.return_value();
 org.omg.DynamicAny.DynStruct dynStruct =
 (org.omg.DynamicAny.DynStruct)
 dynFactory.create_dyn_any(res);
 org.omg.DynamicAny.NameValuePair[] members =
 dynStruct.get_members();
 int hours = members[0].value.extract_ulong(),
 minutes = members[1].value.extract_ulong(),
 seconds = members[2].value.extract_ulong();
 out.println("Time on Server: " + hours
 + ((minutes < 10)? ":0": ":") + minutes
 + ((seconds < 10)? ":0": ":") + seconds);
 } catch (Exception ex) {

246 14 Dynamic Invocation Interface

 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
}

Apart from the general steps when preparing and invoking an operation dynamically, we rec-
ognize numerous code elements that we discussed in Chapter 13 in connection with Dyn-
Anys and TypeCodes. For example, we find determination of an initial reference to a Dyn-
AnyFactory, exactly as it was described in Section 13.3.1. Following, a TypeCode
named time_tc is constructed for the Time structure; again, the procedure is completely
analogous to 13.3.2. This TypeCode is then used to set the return type for the Request
object before dynamically invoking the requested operation. The client blocks until the result
is available in the form of a Time instance embedded in an Any, which may be obtained as
usual through a call of return_value() on the Request object. In order to read the
elements of that Time structure, we have to create a DynAny, more precisely a Dyn-
Struct, from the returned Any instance. Here, we follow the approach discussed in Section
13.3.1 exactly. Once the DynStruct instance is available, we can access its members with
the help of method get_members(), which returns an array of NameValuePairs (see
Section 13.2.5). In the example, we are only interested in the values. These are available as
Anys via the value element. The rest of the code should be familiar by now.

14.2.5 TimeServer Version 5

In version five of the TimeServer, discussed in Section 9.2, the Time structure is used
again. This time, however, it is not returned as the result of operation get_time(); in-
stead, it is passed as an out parameter. For the server side, we can therefore reuse the files
TimeServer.idl and TimeServerImpl.java directly from Section 9.2. The server
implementation, TServer.java, still corresponds to the implementation discussed in Sec-
tion 9.1; and, in the client application, TClient.java, only minor modifications are
needed. The three code lines

req.set_return_type(time_tc);
req.invoke();
Any res = req.return_value();

of the version presented above in Section 14.2.4 now become

Any any = req.add_out_arg();
any.type(time_tc);
req.invoke();

Instead of setting the operation’s return type by means of set_return_type() and, sub-
sequently, accessing that value by invoking return_value(), we now prepare a new
out parameter via add_out_arg() and then set its type to the new TypeCode before
initiating the dynamic invocation.

The last adjustment necessary in the client code pertains to the creation of the DynStruct
object in the next step. So far, we used the identifier res for the Any object. Now, we de-
note the parameter by any. The statement

 14.3 Deferred Synchronous Invocations 247

org.omg.DynamicAny.DynStruct dynStruct =
 (org.omg.DynamicAny.DynStruct)
 dynFactory.create_dyn_any(res);

therefore is changed to

org.omg.DynamicAny.DynStruct dynStruct =
 (org.omg.DynamicAny.DynStruct)
 dynFactory.create_dyn_any(any);

14.3 Deferred Synchronous Invocations

At the end of this chapter, we discuss a last example that, deviating from all the other exam-
ples above, is not based on CORBA’s “synchronous” and “blocking” standard communica-
tion model. Recall that, here, synchronous means a client invokes a server operation and the
server executes the operation and, following, notifies the client that execution has termi-
nated. This notification is also sent in the case of an operation with a void return type.
While the server processes the request, the client blocks, i.e., no further action is performed
on the client side. Blocking the client might be very inconvenient in the case of complex,
time-consuming calculations of the server. In these cases, the client unnecessarily wastes
computation time if the result of an invocation is not needed immediately and the client
could, in the meantime, perform its own computations.

The Dynamic Invocation Interface also provides operations that allow initiating deferred syn-
chronous dynamic invocations that circumvent the described blocking problems. These op-
erations, send_deferred(), get_response(), and poll_response(), are all de-
clared in the interface Request. In Sections 3.4.5, 6.6.3, and 6.6.6, we discussed their fun-
damental possibilities. send_deferred() is called instead of invoke(), whereupon
the specified request is sent to the server; send_deferred(), however, returns immedi-
ately so that the client is able to proceed without having to wait for the completion of the
server’s work. At a later time, the client may invoke get_response() in order to deter-
mine the result of the request. If the request is completed, get_response() returns im-
mediately and the result can be retrieved from the Request object. Otherwise, the client
blocks until the result of the request is available. Blocking can be completely avoided
through invocations of poll_response(). This operation determines whether execution
of the request is complete. Return is immediate whether the response is completed or not. A
TRUE return value indicates that it is; FALSE indicates it is not.

The example we use to demonstrate this approach is based on the IDL specification below:

// Compute.idl

module Compute
{
 interface ComputeServer
 {
 unsigned long binom(in unsigned long n,
 in unsigned long k);
 };
};

248 14 Dynamic Invocation Interface

The interface ComputeServer represents an application that is executed on a powerful
compute server and has to carry out complex calculations. For reasons of simplicity, only one

single operation, binom(), is declared, determining the binomial coefficient
!)!(

!

kkn

n
 of

the two argument values n and k , each of type unsigned long. This example operation
only replaces a pure “Do Nothing” or “Sleep” example and is intended to create an applica-
tion where communication overhead plus remote computation time is significantly lower in
comparison to local execution time on the client host.

One should store the specification Compute.idl in directory \Examples\DIIAsynch
on the server host, compile it, and create the usual directories and subdirectories on the
server and client hosts.

To implement the ComputeServer interface, we employ the well-known recurrence rela-
tion for binomial coefficients. One should store the implementation, ComputeServer-
Impl.java, in directory \Examples\DIIAsynch\YourORB\Server\Compute.

// ComputeServerImpl.java

package Compute;

public class ComputeServerImpl extends ComputeServerPOA {
 public int binom(int n, int k) {
 if (n < 0 || k < 0 || n < k)
 return 0;
 if (k == 0 || k == n)
 return 1;
 else {
 return binom(n - 1, k) + binom(n - 1, k - 1);
 }
 }
}

The class ComputeServerImpl is implemented according to the inheritance approach.

The server application itself needs no additional comments. One could copy the file Ser-
ver.java from the DIICounter example in Section 14.1 and then make the small
changes that are necessary to adapt it to this example (e.g., import package Compute, in-
stantiate and activate the correct type, ComputeServerImpl, change the file name for the
object reference, etc.)

Since we implement a DII example, the more interesting aspects that deserve closer inspec-
tion concern, once again, the client application. One should store this file in directory \Ex-
amples\DIIAsynch\YourORB\Client on the client hosts.

// Client.java

import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import static java.lang.System.*;

 14.3 Deferred Synchronous Invocations 249

public class Client {
 private ORB orb;
 private void initializeORB(String[] args) {
 ... as above in Section 7.13
 private org.omg.CORBA.Object getRef(String refFile) {
 ... as above in Section 7.13
 }
 public Client(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 class NR {
 NR(String name, Request req) {
 this.name = name;
 this.req = req;
 }
 String name;
 Request req;
 }
 Collection<NR> nrColl = new HashSet<NR>();
 Scanner reader = new Scanner(in);
 for (;;) {
 out.print("End (0), New Computation (1), "
 + "Check Status (2)? ");
 out.flush();
 int action = reader.nextInt();
 if (action == 0)
 break;
 else if (action == 1) {
 out.print("n = ");
 out.flush();
 int n = reader.nextInt();
 out.print("k = ");
 out.flush();
 int k = reader.nextInt();
 Request req = obj._request("binom");
 req.add_in_arg().insert_ulong(n);
 req.add_in_arg().insert_ulong(k);
 req.set_return_type(
 orb.get_primitive_tc(TCKind.tk_ulong));
 req.send_deferred();
 nrColl.add(new NR("Binom(" + n + ", " + k + ")",
 req));
 }
 else if (action == 2) {
 for (NR nameReq: nrColl) {
 out.print(nameReq.name);
 Request req = nameReq.req;
 if (req.poll_response()) {
 try {
 req.get_response();
 } catch (WrongTransaction ex) { }
 out.println(" = "
 + req.return_value().extract_ulong());
 }

250 14 Dynamic Invocation Interface

 else
 out.println(" n.a.");
 }
 }
 }
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "ComputeServer.ref";
 new Client(args, refFile);
 }
}

In this implementation, the main work of the client is embedded in the for statement in the
Client constructor. If a user enters a 1 to start a new computation, the two int values n
and k have to be provided. Then, as usual, the Object method _request() is called in
order to create a new Request object for the desired operation named "binom". After
that, method add_in_arg() is called to create the in parameters of type Any, to add
them to the Request object, and to enable insertion of the user-provided values for n and
k. Next, the return type of the remote operation is specified. The respective statements are:

Request req = obj._request("binom");
req.add_in_arg().insert_ulong(n);
req.add_in_arg().insert_ulong(k);
req.set_return_type(
 orb.get_primitive_tc(TCKind.tk_ulong));

Now, the dynamic invocation is initiated. This time, we do not call invoke() but, instead,
use the method send_deferred(), which returns immediately, irrespective of the time
the server object needs to complete the call. To be able to find that request and to check its
status and result, we store the values for n and k (in the form of a name string) as well as the
reference to the Request object in a set of simple objects of type NR. Here, NR stands for
Name/Request. The corresponding class is declared locally in the Client constructor.

Since the server-side computation may take a certain length of time, the client can, in the
meantime, execute other statements. In this example, we let users start another computation
by, again, entering a 1; or, they can check the status of their previous invocations by entering
a 2. In the latter case, the elements in the set of NR objects are inspected. For each of the em-
bedded Requests, method poll_response() is called to find out whether the result of
the invocation is already available. In that case, we can access the result by invoking the Re-
quest method return_value(), which again returns an Any instance. By means of
extract_ulong(), we now extract and print the value of the binomial coefficient; pro-
vided as a Java int value.

Even if the call of method poll_response() indicates that the result of the dynamic in-
vocation is retrievable, OpenORB needs a further call of get_response() to enable ac-
cess to the return value. In the case of JDK or JacORB, this is not necessary. Since this get
statement does not affect the performance of the latter ORB products negatively, it should

 14.4 Exercises 251

always be included for reasons of portability. As discussed in Section 6.6.6, get_re-
sponse() may throw a WrongTransaction exception, hence the try block:

if (req.poll_response()) {
 try {
 req.get_response();
 } catch (WrongTransaction ex) { }
 out.println(" = "
 + req.return_value().extract_ulong());
} else
 out.println(" n.a.");

14.4 Exercises

1. Re-inspect the dynamic TimeServer example in alternative 3. Assume that creation of
the Request object was outsourced into its own method createRequest(), e.g.,

private Request createRequest(org.omg.CORBA.Object obj) {
 Any hany = orb.create_any(),
 ...
 arglist.add_value("", sany, ARG_OUT.value);
 return obj._create_request(null, "get_time", arglist,
 res);
}

Now, after invocation of createRequest() and invoke(), the references to the
Any instances in the parameter list of the invoked method are no longer accessible. Find
out how the following construction works.

Request req = createRequest(obj);
req.invoke();
int hours =
 req.arguments().item(0).value().extract_ulong(),
 minutes =
 req.arguments().item(0).value().extract_ulong(),
 seconds =
 req.arguments().item(0).value().extract_ulong();

2. Implement a TimeServer with a dynamic client for the following IDL definition:

// TimeServer.idl
// Version 6

module Timer
{
 interface TimeServer
 {
 typedef sequence<unsigned long, 3> Time;
 Time get_time();
 };
};

252 14 Dynamic Invocation Interface

3. Implement a TimeServer with a dynamic client for the following IDL definition:

// TimeServer.idl
// Version 7

module Timer
{
 interface TimeServer
 {
 typedef unsigned long Time[3];
 Time get_time();
 };
};

4. Implement a simple dynamic client application for the following ComputeServer:

// Compute.idl

module Compute
{
 interface ComputeServer
 {
 exception NotDefined { };
 unsigned long binom(in unsigned long n,
 in unsigned long k) raises (NotDefined);
 };
};

The exception should be raised when n < 0 or k < 0. Some useful hints might be:

the fully qualified Java identifier of the exception is Compute.Compute-
ServerPackage.NotDefined;

the Request method exceptions() returns an ExceptionList to de-
scribe the exceptions an operation can raise;

the ExceptionList method add() adds the TypeCode of a specific excep-
tion to the list;

the Request method env() returns the Environment the DII uses to make
exception information available; and

the Environment method exception() returns the exception raised by an
invocation, if any.

5. Specifying an operation to be invoked statically as oneway is an alternative to a dy-
namic invocation via send_deferred() as in the above ComputeServer example.
Recall that CORBA’s standard communication model refers to synchronous, blocking
invocations but that oneway operations are by their very nature asynchronous in that no
reply is ever received from a oneway operation and no synchrony can be assumed be-
tween the caller and the target. That is why, for oneway operations, only in parameters
are admissible, the result type must be void, and there must be no list of exceptions to
be raised (see Section 4.5.2). If clients are interested in the result of a oneway operation,

 14.4 Exercises 253

a callback pattern similar to the CBCount example of Chapter 11 must hence be fol-
lowed.

Re-implement the ComputeServer example with a oneway operation binom().The
following IDL specification might be used:

// Compute.idl

module Compute
{
 interface ComputeClient
 {
 void result(in unsigned long n,
 in unsigned long k, in unsigned long res);
 };
 interface ComputeServer
 {
 oneway void binom(in unsigned long n,
 in unsigned long k, in ComputeClient cc);
 };
};

Compare ease of implementation and user-friendliness of both approaches: static stub/ske-
leton-based oneway invocation versus DII-based deferred invocation.

15 Dynamic Skeleton Interface

The DSI, the basics of which were already covered in Section 6.7, is the server-side analog of
the DII. While the DII provides a mechanism to invoke operations from the client without
knowledge about the IDL definition of the server’s operations, the DSI provides a similar
mechanism for the server. With the help of the DSI, it is possible to implement CORBA ob-
jects whose interfaces are unknown at the server compile-time. To be able to execute the cor-
rect method for a client request, the server needs precise information on the operation’s
name, the parameters and the return value, and the exceptions it may raise. Normally, this in-
formation is embedded in the skeleton code that the IDL compiler generates from the IDL
file and that is linked to the server application. For the remainder of this chapter, however,
we assume that the operation’s IDL specification is not available on the server side.

The DSI provides a unique general operation as an entry point that enables the ORB to pass
arbitrary messages to the server, irrespective of their target object. For each of these mes-
sages, the ORB calls that dedicated operation and passes it the message. In the operation’s
body, the message is dynamically evaluated; the type information of the target object is de-
coded and the actual arguments of the server operation to be invoked are determined.

Potentially useful applications for the DSI might, again, be generic implementations of
bridges or adapters. A distributed debugger might be an interesting example for the com-
bined usage of DSI and DII. At run-time, the debugger receives an object reference from a
client and, afterwards, poses as the proper object implementation towards that client. If, at
this point of the scenario, the client invokes an operation using that reference, the debugger
receives the request, protocols it suitably, and redirects the invocation to the respective object
implementation. In the last step, the DII is used since no stub code for the target interface is
known.

In the following, we demonstrate the DSI’s usage by means of an example that concentrates
on the computational details and is, therefore, kept very simple.

15.1 Defining IDL Module Bank

For the DSI example, we define a CORBA module Bank with an interface Account, speci-
fying two operations credit() and debit() as well as an attribute of type float,
which stores the account balance. The IDL file Account.idl is defined as follows:

// Account.idl

module Bank
{
 interface Account
 {
 readonly attribute float balance;
 void credit(in float amount);

256 15 Dynamic Skeleton Interface

 void debit(in float amount);
 };
};

Since it is assumed that the server has no compile-time knowledge on the client’s interface
definitions, one should store this file in the directory \Examples\DSIBank on the client
hosts. The IDL file should then be compiled as usual.

15.2 Implementing the Servant

Analogous to the servants we discussed so far, DSI servants also receive operation requests
via a POA object; their implementation, however, differs considerably from the standard ap-
proach. The typical way to realize a DSI servant can be understood through analysis of the
example implementation DSIAccountImpl.java, which should be stored in directory
\Examples\DSIBank\YourORB\Server on the server host.

// DSIAccountImpl.java

import org.omg.CORBA.*;
import org.omg.PortableServer.*;

class DSIAccountImpl extends
 org.omg.PortableServer.DynamicImplementation {
 private ORB orb;
 private float balance;
 DSIAccountImpl(ORB orb) {
 this.orb = orb;
 balance = 0.0f;
 }
 public void invoke(ServerRequest req) {
 String op = req.operation();
 if (op.equals("_get_balance")) {
 NVList args = orb.create_list(0);
 req.arguments(args);
 Any result = orb.create_any();
 result.insert_float(balance);
 req.set_result(result);
 } else if (op.equals("credit")) {
 NVList args = orb.create_list(1);
 Any arg = orb.create_any();
 arg.type(orb.get_primitive_tc(TCKind.tk_float));
 args.add_value("", arg, ARG_IN.value);
 req.arguments(args);
 float value = arg.extract_float();
 balance += value;
 } else if (op.equals("debit")) {
 NVList args = orb.create_list(1);
 Any arg = orb.create_any();
 arg.type(orb.get_primitive_tc(TCKind.tk_float));
 args.add_value("", arg, ARG_IN.value);
 req.arguments(args);
 float value = arg.extract_float();

 15.2 Implementing the Servant 257

 balance -= value;
 }
 }
 public String[] _all_interfaces(POA poa, byte[] oid) {
 return new String[] { "IDL:Bank/Account:1.0" };
 }
}

The first obvious difference compared with our previous examples concerns the servant’s
superclass. Following the inheritance approach, and having access to the IDL specification of
the Account, we would normally derive from the class AccountPOA generated by the
IDL compiler. For the DSI implementation, class DynamicImplementation is the su-
perclass to employ. This class is a subclass of the Servant class provided by the CORBA
runtime library (see Sections 6.7.2 and 6.8). As indicated in the introduction above, the DSI’s
functionality is essentially based on a central entry point for operation invocations. In the
Java mapping, this entry point is represented by method invoke(), which is inherited from
the abstract class DynamicImplementation and must be suitably overridden in the ser-
vant, in order to provide the program logic for processing of DSI-based invocations.

Once the POA receives the request of a client to execute an operation invocation, it calls me-
thod invoke() and passes it a reference to a ServerRequest object (see Sections 6.7.1
and 6.7.2). The object contains all the information relevant for the request: the name of the
operation, the list of arguments, etc. The name of the operation is obtained as a string
through the ServerRequest method operation(). In the cases "credit" and
"debit", this result is intuitively clear; with respect to the readonly attribute balance,
the pattern explained in the chapter on DII is followed. Here, the respective IDL name is re-
turned; in the example, that name is "_get_balance".

It should be noted here that in this example, somewhat unrealistically for a practical DSI ap-
plication, we do not support different interfaces and we do not want to access an Interface
Repository to obtain type information dynamically. For that reason, we also refrain from de-
termining the POA and the ObjectId of the object first and then getting the Reposito-
ryId of the object, which would be necessary steps before accessing the IR. (Also see the
discussion of method _all_interfaces() below.) Instead, analogous to the DII exam-
ples, for reasons of simplicity, we assume that certain basic facts are known about the opera-
tions, e.g., concerning the number and types of the operation parameters. In an entirely ge-
neric application, that knowledge would not be available and it would have to be acquired
dynamically from the IR.

In the if statement in the body of our invoke() implementation, the name of the actual
operation is compared to the names of the three operations we support due to our above-
mentioned basic knowledge. For the dynamic invocation of these operations, the values of
the in parameters of the invocation have to be determined, values for inout and out pa-
rameters must be set, if needed, and a return value must be provided, if needed. For these ac-
tivities, the ServerRequest object plays a role comparable to that of the Request ob-
ject in the DII context. It is recommended that the structure of a Request be recalled, ex-
plained in Sections 6.7.1 and 6.7.2. There, we saw that the methods arguments() and
set_result() are important. Here, method arguments() is called with an NVList
argument containing entries for all in, inout, and out parameters. The ORB automati-

258 15 Dynamic Skeleton Interface

cally enters the values passed by the client into that NVList instance. Therefore, after the
invocation of arguments(), those elements of the NVList standing for in and inout
parameters are supplied with the values provided by the client. These may subsequently be
processed with the functionality available in the DynamicAny module. A second purpose of
the NVList is to accept result values calculated for the operation’s inout and out pa-
rameters; these are, again, constructed with the help of module DynamicAny. Finally, if
applicable, the return result of the operation is set by calling set_result(). The value is
passed inside an Any object.

Let us first analyze the operation corresponding to the name "_get_balance":

NVList args = orb.create_list(0);
req.arguments(args);
Any result = orb.create_any();
result.insert_float(balance);
req.set_result(result);

As discussed in Section 6.6.4, the necessary NVList object is created with the ORB method
create_list(). Since the invoked operation is a simple read operation, we create a list
with 0 parameters and directly pass it to the call of arguments(). This procedure seems to
be a bit tedious and one might be tempted to call arguments(null) or simply skip list
creation and the call entirely. However, of the three ORBs we use, only JacORB tolerated
this shortcut and for reasons of portability, it is recommended to always proceed as in the
code example above. Following the NVList creation and the invocation of arguments(),
the current value of the instance variable balance has to be set as the return value. The
create_any() and insert_float() invocations are familiar; the method set_re-
sult() is called to pass the return value to the ServerRequest object.

The process to handle an invocation of operation "credit" is slightly different because the
operation is specified with an in parameter of type float and a void return type:

NVList args = orb.create_list(1);
Any arg = orb.create_any();
arg.type(orb.get_primitive_tc(TCKind.tk_float));
args.add_value("", arg, ARG_IN.value);
req.arguments(args);
float value = arg.extract_float();
balance += value;

As the operation has one parameter, we create the NVList by means of calling crea-
te_list(1). Before invoking arguments() on the ServerRequest object, the
empty NVList must be populated with a suitable entry for the float parameter. To that
end, an Any container with the necessary type information is created. In the next step, this
Any instance is added to the argument list through an invocation of method add_value().
The name of the parameter (here, simply "") and its directional attribute (here,
ARG_IN.value) also have to be provided. The parameter list is now totally specified and
can be passed as an argument to the arguments() method. When that call is completed,
the argument passed by the client application is available in the Any instance and its value
can be obtained by an appropriate extraction method. In the example, this is method ex-
tract_float(). Processing of the extracted value or values would now follow. Here, we

 15.3 Implementing the Server Application 259

just have to add the value to the attribute balance. The DSI implementation for the op-
eration "debit" is defined analogous to the just described "credit" implementation.

To complete the discussion, we finally have to mention method _all_interfaces(). It
is declared abstract in the Servant superclass and needs to be overridden in the concrete
implementation of a DSI servant. In the case of static invocations, that method is part of the
automatically generated skeleton code. Since it is occasionally called by the ORB, developers
have to provide an implementation for the DSI approach. The method takes a POA instance
and an ObjectId as arguments and returns a string array containing a sequence of Repo-
sitoryIds representing the type information of the target object. The first array element
contains the most derived interface; additional elements stand for its supertypes. In the ex-
ample, the array length is 1 and the single identifier is "IDL:Bank/Account:1.0". It
might be interesting to inspect the body of the IDL compiler-generated method _all_in-
terfaces() in our inheritance example. There, the String array {"IDL:Timer/Da-
teTimeServer:1.0","IDL:Timer/TimeServer:1.0"} is returned; see the class
declaration DateTimeServerPOA.java.

15.3 Implementing the Server Application

The DSI server application presents only minor characteristic differences in comparison to
our previous server implementations. One should store the following file DSIServer.ja-
va in directory \Examples\DSIBank\YourORB\Server on the server host. The
server can be translated and started without further preparations; note that the IDL specifica-
tion Account.idl is not available on the server side.

// DSIServer.java

import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import static java.lang.System.*;

public class DSIServer {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private void putRef(org.omg.CORBA.Object obj,
 String refFile) {
 ... as above in Section 8.2
 }
 public DSIServer(String[] args, String refFile) {
 try {
 initializeORB(args);
 DSIAccountImpl a_impl = new DSIAccountImpl(orb);
 org.omg.CORBA.Object a =
 rootPOA.servant_to_reference(a_impl);
 putRef(a, refFile);

260 15 Dynamic Skeleton Interface

 rootPOA.the_POAManager().activate();
 orb.run();
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "Account.ref";
 new DSIServer(args, refFile);
 }
}

The only remarkable detail in the server application differing from earlier program code is
the way in which the object reference to the newly created server object is obtained before it
is written to the reference file. When we implement the static approach, we typically rely on
the available skeleton code and use a statement of this kind:

CounterFactory cf = cf_impl._this(orb);

Now, a more generic procedure is needed. Different than a normal servant, a DSI servant has
no type-specific _this() method. We therefore call servant_to_reference() on
the root POA to obtain a generic object reference of type org.omg.CORBA.Object (see
Section 6.3.2):

org.omg.CORBA.Object a =
 rootPOA.servant_to_reference(a_impl);

The remaining code corresponds to the familiar server implementations discussed in earlier
examples.

15.4 Implementing the Client Application

To complete the DSI example and to obtain a runnable distributed application, the client re-
mains to be implemented.

// DSIClient.java

import Bank.*;
import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import static java.lang.System.*;

public class DSIClient {
 private ORB orb;
 private void initializeORB(String[] args) {
 ... as above in Section 8.3
 }
 private org.omg.CORBA.Object getRef(String refFile) {
 ... as above in Section 8.3
 }

 15.5 Exercises 261

 public DSIClient(String[] args, String refFile) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = getRef(refFile);
 Account a = AccountHelper.narrow(obj);
 a.credit(28231.15f);
 a.debit(100.9f);
 out.println("Account balance: " + a.balance());
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 String refFile = "Account.ref";
 new DSIClient(args, refFile);
 }
}

It can easily be seen that this client has no specific characteristic features differentiating it
from earlier example clients. In particular, on the basis of the client’s program code, it is im-
possible to recognize whether requests are processed dynamically or statically on the server
side. In our example scenario, each client host has the IDL file and the generated stub code at
its disposal so that the object reference read from "Account.ref" can be cast to its cor-
rect type as usual with the respective helper class:

Account a = AccountHelper.narrow(obj);

Also, the remote invocations of methods debit() and credit() give no indication
whatsoever that the server handles the invocations dynamically with the help of the DSI.

One should store the file DSIClient.java in the directory \Examples\DSI-
Bank\YourORB\Client on the client hosts, translate it, and run the completed applica-
tion as usual. Again, one notices that the correct Java method name for accessing the bal-
ance attribute is balance(), as opposed to the IDL operation name inspected in the body
of the DSI servant’s invoke() method.

15.5 Exercises

1. Implement a DSI version of the Counter example.

2. Write a DII-DSI version of the Bank example with a DSI server and a DII client.

16 Implementing Different POAs

In Section 6.3, we introduced OMG’s Portable Object Adapter, which functions like an
“electrical outlet”, connecting CORBA objects to the network and making them accessible to
clients. More precisely, on the server side, the POA is responsible for localization of servant
objects suited to process incoming client requests and for invocation of the corresponding
operations on these servants. When designing the POA, the OMG found it especially impor-
tant to specify a highly flexible and scalable architecture. For that reason, the possibility to
determine various aspects of a POA’s behavior during its creation by setting a number of
policies was provided. Thus, many different types of object adapters may be generated. A de-
tailed discussion of the various combinations of POA policies is beyond the scope of this
book. And, in practice, it is rarely the case that more than two or three different POA types
are used in the same application. Therefore, in this chapter, we limit our explanations to the
discussion of one single example that demonstrates how a dedicated POA may be configured
and employed.

Before we turn our attention to the example, it is potentially useful to review the typical se-
quence of operation invocations in a CORBA system and the POA’s role in that scenario.
The necessary basic condition is that a CORBA object be generated on the server host
through the instantiation of a corresponding servant object and its subsequent activation.
Normally, activation is carried out through entering the servant in the POA’s Active Object
Map. Recall that this map contains an ObjectId and a reference to the servant. Now, if a
client request is sent to the server, it is first passed through a POAManager object, which
directs the incoming messages to the POA object or one of the POA objects it controls. The
POA manager can be in one of the four processing states, holding, active, discarding, or in-
active. To enable its POA objects to process requests, the POAManager object must be in
the active state (see Section 6.3.1). Depending on the POA’s configuration, there are differ-
ent strategies followed when the ObjectId contained in the client request is mapped to the
corresponding servant object. By default, the 1-to-1 and the n-to-1 mapping of ObjectIds
to servant objects based on an Active Object Map is supported. The n-to-1 mapping is of
special interest in the case of stateless servants that need not store any object-specific attrib-
ute values. Besides the static approach based on the Active Object Map, the dynamic assign-
ment of ObjectIds to servants is a further possibility, which we explain in the example
discussed below.

All the examples presented so far managed with the root POA, which is automatically cre-
ated when a CORBA server is started. This dedicated POA is configured with an immutable
set of standard policies and may serve as the basis of a hierarchy of additionally created and
specially configured child POAs (see Section 6.3.1). In previous examples, we see time and
again how a reference to the root POA can be obtained. A child POA whose policies can be
set as required is created with the help of operation create_POA(), which is invoked on
an existing POA object. Depending on the type of the CORBA objects to be supported by the
POA, e.g., transient objects, persistent objects, or factory objects, and depending on their de-
sired attributes, a suitable combination of policy values must be selected.

264 16 Implementing Different POAs

In the following example, a child POA is created that, differing from the root POA, supports
the request processing policy USE_SERVANT_MANAGER as well as the servant retention
policy NON_RETAIN, i.e., it does without an Active Object Map. USE_SERVANT_MANA-
GER indicates that the POA uses a ServantManager object instead, which is normally
done to improve scalability of the server by influencing the life cycles and activation of the
servants. Design patterns, such as the “Evictor” pattern [KJ04], may be implemented here to
optimize resource consumption. In Sections 6.3.4 and 6.3.5, we noted that two types of
ServantManager objects exist: ServantActivators and ServantLocators.
ServantActivators rely on the existence of an Active Object Map and incarnate (create
and activate) a suitable servant object in the case that the request’s ObjectId is not found.
On the other hand, ServantLocators are used by POAs that do not manage an Active
Object Map (NON_RETAIN) so that the ServantLocator object has to dynamically map
ObjectIds to servant objects when its operation preinvoke() is invoked. Since we de-
cided to set the servant retention policy to NON_RETAIN, the concrete ServantManager
in the example must inevitably be a ServantLocator.

Usage of a ServantLocator allows a CORBA programmer to implement almost any life
cycle managing model for servants. As described in Section 6.3.5, to that purpose, the Ser-
vantLocator interface specifies two operations, preinvoke() and postinvoke(),
which programmers may implement appropriately; these operations are automatically in-
voked by the POA for every request it receives. The preinvoke() implementation has to
return a suitable servant object and must provide a cookie as an out parameter. The cookie
should identify the invocation so that it may be used later in the operation’s postin-
voke() implementation, for example, to free resources of the then completed request. Be-
tween these two calls, the POA invokes the requested operation on the servant returned by
preinvoke(). The original client request is then processed.

16.1 Counter Example

Once again, we fall back to the well-known Counter interface, discussed above in Sections
7.13 7.15. One should copy the IDL file Counter.idl from \Examples\ModCoun-
ter to directories \Examples\POA created on the server and client hosts and compile it
as usual.

The servant implementation, CounterImpl.java, can be reused entirely unrevised; one
should copy this file from \Examples\ModCounter\YourORB\Server\Count to
the directory \Examples\POA\YourORB\Server\Count on the server host. The
GUIClient can be copied as well. This file can be found in the directory \Examp-
les\ModCounter\YourORB\Client; it should be copied to directory \Examp-
les\POA\YourORB\Client on the client hosts. The client application is in no way af-
fected by the server-side processing models.

All changes relevant for this chapter only touch upon the implementation of the Servant-
Locator, which is necessitated for the first time, and on the proper server application. Both
are presented in the next sections.

 16.2 Implementing ServantLocator 265

16.2 Implementing ServantLocator

We first implement the ServantLocator and create a Java file ServantLocator-
Impl, as usual to be stored in directory \Examples\POA\YourORB\Server on the
server host. Since we have to provide our own implementation of the operations prein-
voke() and postinvoke(), we use the opportunity to integrate a simple kind of logging
functionality that is completely transparent to programmers of client or server applications.
For each request that the POA directs to a servant object via the ServantLocator, the
ServantLocator object in the context of its preinvoke() and postinvoke()
methods writes the current date and time, an index counting how many times a Counter
operation was invoked, and the name of the respective operation into a log file. The corre-
sponding Java code is:

// ServantLocatorImpl.java

import Count.*;
import java.io.*;
import java.text.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.ServantLocatorPackage.*;

class ServantLocatorImpl
 extends LocalObject implements ServantLocator {
 private CounterImpl c_impl;
 private PrintWriter writer;
 private DateFormat form;
 private Long invCount = new Long(0);
 ServantLocatorImpl() {
 c_impl = new CounterImpl();
 try {
 writer = new PrintWriter(
 new FileOutputStream("Log.txt"));
 } catch (IOException ex) { }
 form = DateFormat.getDateTimeInstance();
 }
 public synchronized Servant preinvoke(byte[] oid,
 POA adapter, String op, CookieHolder cookie) {
 writer.println(form.format(new Date())
 + " [operation(" + invCount + "): " + op + ">");
 writer.flush();
 cookie.value = invCount++;
 return c_impl;
 }
 public synchronized void postinvoke(byte[] oid,
 POA adapter, String op, java.lang.Object cookie,
 Servant servant) {
 writer.println(form.format(new Date())
 + " <operation(" + (Long)cookie + "): " + op + "]");
 writer.flush();
 }
}

266 16 Implementing Different POAs

Since the ServantLocator is a local IDL interface, the class ServantLocatorImpl
inherits from class org.omg.CORBA.LocalObject and at the same time implements
the Java interface org.omg.PortableServer.ServantLocator. In the constructor,
an instance of the servant implementation, CounterImpl, is created and the log file
Log.txt is generated as well. In the method preinvoke(), which is invoked by the
POA each time an operation has to be executed, first the date/time, then the invocation
counter, and, finally, the operation name information is written to the log. Subsequently, the
cookie’s value, i.e., the invocation counter, is incremented and stored. The last statement re-
turns the reference to the servant.

Cookie is an opaque type in IDL, meaning that its representation is specified by the lan-
guage mapping. In the Java mapping, the type PortableServer::ServantLoca-
tor::Cookie is mapped to the class java.lang.Object. In addition, a Cookie-
Holder class is provided for passing the Cookie type as an in or an out parameter. The
CookieHolder class follows exactly the same pattern as the other holder classes for basic
types (see Section 5.4).

final public class CookieHolder implements
 org.omg.CORBA.portable.Streamable {
 public java.lang.Object value;
 public CookieHolder() { }
 public CookieHolder(java.lang.Object o) { value = o; }
 ...
}

For the Java mapping of the preinvoke() operation, a CookieHolder object is passed
in with its value set to null. Developers may then set the value to any Java object. The
same Cookie object is passed to the postinvoke() operation.

In the above example, the method postinvoke() simply writes the date/time, the invoca-
tion counter, and the operation name to the log file. This method is called after the POA ini-
tiated execution of the proper increment, decrement, or get method via the servant reference
obtained from preinvoke().

16.3 Implementing the Server Application

Creation of a dedicated child POA with specific policy properties has to be taken care of in
the server application. For our simple example, the following implementation is able to per-
form that task:

// Server.java

import Count.*;
import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;
import static java.lang.System.*;

 16.3 Implementing the Server Application 267

public class Server {
 private ORB orb;
 private POA rootPOA, locatorPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private void putRef(org.omg.CORBA.Object obj,
 String refFile) {
 ... as above in Section 8.2
 }
 private void createPOA() {
 try {
 Policy[] policies = {
 rootPOA.create_servant_retention_policy(
 ServantRetentionPolicyValue.NON_RETAIN),
 rootPOA.create_request_processing_policy(
 RequestProcessingPolicyValue.USE_SERVANT_MANAGER)
 };
 locatorPOA = rootPOA.create_POA("ServantLocatorPOA",
 rootPOA.the_POAManager(), policies);
 } catch (InvalidPolicy ex) {
 } catch (AdapterAlreadyExists ex) {
 }
 }
 public Server(String[] args, String refFile) {
 try {
 initializeORB(args);
 createPOA();
 ServantManager locator = new ServantLocatorImpl();
 locatorPOA.set_servant_manager(locator);
 org.omg.CORBA.Object counter =
 locatorPOA.create_reference(
 "IDL:Count:Counter:1.0");
 putRef(counter, refFile);
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String args[]) {
 String refFile = "Counter.ref";
 new Server(args, refFile);
 }
}

The fundamental design of the server application remains as it was. But, since we now intend
to create a new object adapter besides the root POA, we declare the variable locatorPOA,
also of type POA. In the method createPOA(), the desired policies of the new POA are set
and this new POA is created as a child of the root POA. We declare a Policy array, poli-
cies, the Java equivalent of the IDL type CORBA::PolicyList. This array has to be
passed when the locatorPOA is created; it specifies the new POA’s properties for its
whole life cycle. At this point, it should be noted that all policies not explicitly set obtain de-

268 16 Implementing Different POAs

fault values corresponding to the root POA configuration. There is one exception, however.
The ImplicitActivationPolicy, which in the root POA has the value IMPLICIT_
ACTIVATION, is set to NO_IMPLICIT_ACTIVATION in the default configuration of a
child POA. In addition to the policies, the name of the new POA as well as a POAMan-
ager object, which manages the new POA, have to be passed to the create_POA()
method. Two exceptions may be thrown and have to be handled when create_POA() is
called.

To enable the newly created POA to employ a ServantLocator instance in order to lo-
cate servant objects, that instance needs to be generated and registered with the new POA in
the next step. Registration is carried out through the invocation of method set_servant_
manager(). All preparations are completed through a call of method create_refe-
rence() on the new object adapter. In that way, a reference to a Counter object is cre-
ated that can later be stringified and written to a reference file. The RepositoryId of the
Counter object, in our example "IDL:Count:Counter:1.0", is passed as an argu-
ment here. The rest of the server application corresponds to the pattern known from earlier
examples.

One should now store the file Server.java in directory \Examples\POA\Your-
ORB\Server on the server host. After translating the server and the client applications,
starting the server, and copying its reference file, Counter.ref, to the client hosts, the cli-
ents may be started and the complete application should be running. The log file Log.txt
is written to the Server directory. It has the following structure:

...
Oct 10, 2005 8:36:05 AM [operation(1218): inc>
Oct 10, 2005 8:36:06 AM <operation(1218): inc]
Oct 10, 2005 8:36:06 AM [operation(1219): inc>
Oct 10, 2005 8:36:06 AM [operation(1220): _get_value>
Oct 10, 2005 8:36:06 AM <operation(1220): _get_value]
Oct 10, 2005 8:36:06 AM <operation(1219): inc]
Oct 10, 2005 8:36:06 AM [operation(1221): _get_value>
...

16.4 Exercise

Rewrite the ComputeServer example from Section 14.3 such that, for each invocation of
method binom(), the necessary computation time in milliseconds is written to a log file.
After several invocations, the log might look like this:

Invocation 1 took 20 msec to complete.
Invocation 2 took 3 msec to complete.
Invocation 3 took 3775 msec to complete.
...

Take the unmodified client implementation directly from Section 14.3 and write a servant lo-
cator analogous to the code in Section 16.2. Reuse as much as possible from the above dis-
cussed server application.

17 CORBA’s Naming Service

A typical problem that needs to be solved when developing distributed object-oriented appli-
cations with clients and servers residing on different hosts on a network is how a client ap-
plication can obtain a reference to the server objects with which it wants to communicate.
Only by means of these references is it possible to invoke the desired remote operations on
the server objects. This problem is often called a “bootstrapping problem”. Its solution is
complicated by the fact that utilization of CORBA object references is rather unwieldy for
human users. In addition to the internal CORBA representation for IORs, which is inacces-
sible anyhow, we have the string representation. This, however, is only a long sequence of
digits without direct meaning.

In our previous examples, we used the tedious approach of stringifying the IOR of the newly
created server objects in the server application, writing it to a file residing on the server host,
and transmitting it somehow manually to the client hosts. In the client application, that IOR
string was then read and converted back to a valid IOR. Possible alternatives to that proce-
dure might be the following approaches:

the bootstrap file that stores the object reference is jointly used by applications on
server host and client hosts, for example, through an NFS-based file system;

information on the object reference is reachable via a URL—that is, there is an FTP
or HTTP server in the network domain appropriately configured to allow read access
to the bootstrap file; or

users enter the IOR string themselves.

All these alternatives are at best inconvenient to use and often require additional expenditure.
They are especially impractical when clients want to invoke server operations for a longer
period of time during which the object references might change, e.g., when a server needs to
be restarted. In such a case, all clients would have to obtain the new server reference in the
same laborious way as before.

A solution to those problems is the usage of a central localizer component, or of a corre-
sponding service, which provides an entry point known to all parts of the distributed applica-
tion (also see Section 17.3) and which introduces a new level of abstraction for identifica-
tion of objects. The latter goal may be reached by associating meaningful human-readable
name strings with object references. With its Naming Service [OMG04a], the OMG speci-
fied a simple but interoperable CORBAservice that lets users name objects and, in reverse,
find objects by name. In newer versions of the specification, that service is also denoted the
Interoperable Naming Service (INS).

270 17 CORBA’s Naming Service

17.1 Basics

With its ability to find distributed objects by name, the Naming Service is the most funda-
mental CORBAservice. It is the first service specified by the OMG and it is, meanwhile, im-
plemented by virtually any ORB vendor. The NS is like the telephone white pages. It man-
ages associations of freely eligible names to object references and enables clients to locate
object references by using the name as a search string. As a bootstrap service, executed inde-
pendently of client and server applications, the NS considerably simplifies the establishment
of initial connections between clients and servers.

Typically, a server application determines name-to-object associations for the objects, which
are used as initial service providers for clients. These name bindings are then registered with
the Naming Service. Each client knowing the name of a server object can then query the NS
in order to obtain this object’s reference. In addition to simplifying administration and trans-
mission of speaking object names, the NS also decouples service providers and service users
in that the concrete object implementation associated with a name may be exchanged al-
though the name is maintained. In this way, also the problems of server restarts, mentioned
above, are reduced since a client always receives a valid object reference bound or rebound
to the originally assigned name.

In order not to be restricted to a single flat name space, the Naming Service specification lets
one create naming hierarchies through the usage of naming contexts. Strictly speaking, two
types of NS bindings must be distinguished. On the one hand, we have the object bindings
mentioned above, which associate a name to an object reference and which are always valid
in a specific naming context. On the other hand, we may create context bindings, which as-
sociate a name to a naming context. The name hierarchy created in this way resembles the
concept of a file system consisting of named directories (analogous to naming contexts),
which, again, may consist of named files (analogous to object references) or of named subdi-
rectories (analogous to further naming contexts). Thus, a context is a set of object or context
bindings. Each name is unique in its context and identifies another context or an object refer-
ence.

Before we turn to the first example demonstrating bindings for naming contexts and object
references, it may be potentially useful to have a look at the IDL definition that the NS speci-
fication provides for names and naming contexts:

module CosNaming
{
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
 typedef sequence<NameComponent> Name;
 ...
};

Note that Istring was a placeholder for an IDL “internationalized string” data type in ear-
lier versions of the specification, maintained for compatibility reasons. In principle, a Name
that can be handled by the NS consists of a sequence of NameComponents. Each name

 17.1 Basics 271

component has two members, the id member and the kind member, both of which may
hold a string. While it is customary to use the id part to store the proper identifier for the
name component, the kind part is available for application-specific purposes. Note, how-
ever, that both parts together are considered when name components are compared for iden-
tity. A name with a single component is called a simple name; a name with multiple compo-
nents is called a compound name. Each component of a compound name, except the last, is
used to name a context; the last component denotes the object reference.

In addition to the just described IDL-based representation of names, the current NS specifica-
tion also provides a standardized string-based name representation. We discuss this form in
more detail in Section 17.7. At the moment, it should suffice to know that, in the string rep-
resentation, name components are separated by a slash ‘/’ whereas the id and the kind
members are separated by a dot ‘.’.

Figure 21 shows an example of an NS hierarchy; this example is reused in Exercise 3 at the
end of this chapter. The point on top symbolizes the unnamed initial naming context, which
represents the entry point to the name hierarchy. In the example, it contains two naming con-
texts, bound to the names "Europe.Continent" and "America.Continent". Be-
low these, additional levels of naming contexts may be seen. The naming context named
"Europe.Continent/France.Country/Ile de France.Region/Paris.Ci-
ty" contains no further naming contexts; however, two object bindings named "Arc de
Triomphe.Attraction" and "La Tour Eiffel.Attraction" are defined here.
An example of a compound name is "Europe.Continent/France.Country/Ile
de France.Region/Paris.City/Arc de Triomphe.Attraction". It consists

id kind

Europe Continent

id kind

France Country

id kind

Germany Country

id kind

Ile de France Region

id kind

Baden-
Wuerttemberg

State

id kind

Paris City

id kind

Mannheim City

name binding to a
naming context

name binding to an
object reference

id kind

America Continent

id kind

USA Country

id kind

California State

id kind

Malibu City

id kind

Arc de
Triomphe

Attraction

id kind

La Tour Eiffel Attraction

Figure 21: A Naming Graph

272 17 CORBA’s Naming Service

of the four context names, "Europe.Continent", "France.Country", "Ile de
France.Region", and "Paris.City", followed by the simple name "Arc de Tri-
omphe.Attraction".

So far, the NS description may give the impression that a naming graph always has a tree-
like hierarchical structure. That may be customary in practice; however, it is in no way man-
datory. The NS specification even allows defining name graphs containing cycles, requiring
special attention when code iterating through the naming contexts is written.

17.2 IDL Definition of the Naming Service

Three interfaces, the NamingContext, the BindingIterator, and the NamingCon-
textExt interfaces, together define the Naming Service. Figure 22 shows an overview of
their operations and dependencies in the form of a UML class diagram. The exceptions that
may be raised are not displayed, here. At the end of the book, the complete specification of
the NS is appended (Appendix C).

The fundamental interface NamingContext provides a number of operations for creating
or removing name bindings as well as for retrieving an object bound to a name. The Nam-
ingContext interface further provides the means to create a new or to delete an existing
NamingContext in a given NamingContext.

The operations bind() and rebind() create a name binding for a CORBA object in the
NamingContext for which they are invoked. If the name is a compound name, e.g.,
i1.k1/i2.k2/.../in.kn, it is necessary that the intermediate components i1.k1,
i2.k2,..., in-1.kn-1 are already bound to create a structure of nested context names be-
low the respective NamingContext; the last name component, i.e., the simple name
in.kn, is then bound. If that structure does not yet exist, a NotFound exception is raised.

<< interface >>
NamingContextExt

to_string(in Name):StringName
to_name(in StringName):Name
to_url(in Address, in StringName):URLString
resolve_str(in StringName):Object

<< interface >>
BindingIterator

next_one(out Binding): boolean
next_n(in unsigned long, out BindingList): boolean
destroy()

<< interface >>
NamingContext

bind(in Name, in Object)
rebind(in Name, in Object)
bind_context(in Name, in NamingContext)
rebind_context(in Name, in NamingContext)
resolve (in Name):Object
unbind(in Name)
new_context():NamingContext
bind_new_context(in Name):NamingContext
destroy()
list(in unsigned long, out BindingList, out BindingIterator)

Figure 22: Dependencies Between NS Interfaces

 17.2 IDL Definition of the Naming Service 273

The difference between the two operations is that bind() only creates a name binding
when the name passed is not yet bound in the context. Otherwise, an AlreadyBound ex-
ception is raised. The rebind() operation creates a name binding in the naming context
even if the name is already bound; in that case, the existing binding is simply overwritten.
Since in most cases this is the desired behavior, programmers often prefer the rebind() to
the bind() operation. In addition to the AlreadyBound exception, which may be raised
by the bind() operation, and to the NotFound exception, which may be raised both by
bind() and rebind(), further exceptions are possible. An InvalidName exception is
raised when a syntactically incorrect name (for example, an empty name without compo-
nents) is passed or a CannotProceed exception is raised whenever the NS is not able to
complete the invocation (for example, due to security requirements). The IDL specification
given in Appendix B shows the structure of the exceptions; this information may be useful
when a caller needs to handle these exceptions.

bind_context() and rebind_context() operate with similar semantics and have a
comparable list of exceptions. They create a new NamingContext in the context for which
they are invoked. Both operations assume that the passed NamingContext object was al-
ready created by a new_context() invocation. Invoking operation bind_new_con-
text() allows creating and binding such a context object at once. With these three opera-
tions, new context bindings may be generated, which expand the hierarchy of names existing
so far. Again, it must be noted that the direct parent naming context of the new context must
already exist because, otherwise, the NotFound exception is raised. For example, the con-
text "Europe.Continent/France.Country/Ile de France.Region" can only
be created when the parent context "Europe.Continent/France.Country" exists.
As the examples below demonstrate, this means that multi-level hierarchies of naming con-
texts may not be created simply in one single step.

The unbind() operation removes a name binding from a context. It may be invoked to re-
move name bindings for objects and naming contexts as well. The exceptions NotFound,
CannotProceed, and InvalidName may be raised.

To finally delete a naming context that is no longer needed, the operation destroy() is in-
voked. Precondition for its successful deletion is that no more bindings for objects or con-
texts exist in it; otherwise, a NotEmpty exception is raised.

Any named object or context object can be found using the resolve() operation. It is
passed a Name and, if the corresponding object is found, returns the object’s reference. Each
component of the given name and each id and kind member must exactly match the bound
name. The operation’s return type is Object and, therefore, it has to be narrowed appropri-
ately before it can be further used. The NamingContextExt interface, discussed in Sec-
tion 17.7, provides an additional operation for retrieving objects. Exceptions of types Not-
Found, CannotProceed, and InvalidName may be raised.

The list() operation lets clients iterate through the name bindings contained in a naming
context. It returns a BindingIterator object. Navigation is carried out by invoking op-
erations next_one() and next_n() on the returned BindingIterator; we give an
example for this procedure in Section 17.6.

274 17 CORBA’s Naming Service

Finally, the interface NamingContextExt has to be mentioned. It is a subinterface of in-
terface NamingContext and was not yet defined in the original version of the NS specifi-
cation. Besides the string format for names, which we already mentioned, a URL format for
names and corresponding conversion operations are specified. Section 17.7 is dedicated to
discussing the new options provided by this extension.

There are no specifics that would have to be observed with regard to the NS’s Java mapping;
the usual rules apply.

17.3 Bootstrapping Problem

At the beginning of the chapter, we explained that the Naming Service plays the role of a
central locator for objects and that it is suited to solving the bootstrapping problem of obtain-
ing initial object references. Usage of the NS does not solve that problem entirely because,
now, the server and client applications need to obtain a reference to the Naming Service in
order to bind and resolve names with it. But this problem is far easier to solve. The only pre-
requisites are that the NS is running on a host whose DNS-style name or IP address is known
and that a specific port number is used. The next two subsections show how clients and serv-
ers can access an NS based on this minimal information. For that purpose, CORBA provides
two standardized command-line options, used during server and client start-up.

17.3.1 URL Schemes

Since its version 3.0, the CORBA specification defines a number of URL-based addressing
schemes, the so-called “CORBA URLs”, which follow the WWW addressing schemes and
may be used to localize CORBA objects and to represent object references. By means of the
ORB operation string_to_object(), such a URL string can be converted into a true
object reference. These URL schemes allow us to identify an initial reference to the NS sim-
ply on the basis of its network address and port number.

Table 12 lists the different CORBA URL formats. The column “Status” indicates whether
the respective format is required or optional for a CORBA 3.0 ORB implementation.

Table 12: CORBA URL Addressing Schemes

Scheme Description Status

IOR: Standard stringified IOR format Required

corbaloc:rir: Simple object reference; implicitly resolved via
resolve_initial_references()

Required

corbaloc:: or
corbaloc:iiop:

IIOP-specific stringified IOR format Required

corbaname:rir: Name to be resolved relative to the initial naming
context

Required

corbaname:: or
corbaname:iiop:

Name to be resolved relative to the initial naming
context

Required

17.3 Bootstrapping Problem 275

file:// Specifies a file containing the desired URL/IOR Optional

ftp:// Specifies a file containing a URL/IOR that is
accessible via the FTP protocol

Optional

http:// Specifies an HTTP URL that returns the desired
URL/IOR

Optional

The corbaloc URL scheme as well as the corbaname scheme support different proto-
cols; the composition of the URL is protocol-dependent. Currently, two standard protocols,
iiop and rir, are supported.

A corbaloc URL for the IIOP consist of:

the identifier corbaloc,

a protocol identifier (iiop is the default protocol so this detail is optional),

the protocol version information (also optional; the default value is 1.0),

the host name or the host’s IP address,

the port number (optional; the default value is 2089), and

an optional object key.

The general syntax of a corbaloc URL scheme is therefore:

corbaloc:[iiop]:[version@]host[:port][/object_key]

A comma-separated list of protocol, host, and port information may be specified. In that case,
the ORB in turn tries to find the object reference on these locations.

The rir protocol may be used as an abbreviation for the ORB operation resolve_ini-
tial_references(), hence its name. The general syntax of a corbaloc:rir URL is:

corbaloc:rir:[/key_string]

The optional key_string identifies an initial reference type; a list of admissible values is
supplied in Table 11. The key_string is used as the argument to resolve_initi-
al_references(). An empty key_string is interpreted as the default argument
"NameService".

The corbaname URL scheme extends the capabilities of the corbaloc scheme to allow
URLs to denote NamingContext entries in an NS. This feature is not yet implemented by
any of the ORBs we used; we do not discuss its syntax and semantics in this book. Also, the
optional URL formats file://, ftp://, and http:// are not treated here.

17.3.2 Standard Command-Line Options

It was previously discussed that CORBA client or server applications can gain access to ba-
sic object references such as a reference to the NS through invocations of the ORB operation
resolve_initial_references(). This works in any case for the ORB’s own root

276 17 CORBA’s Naming Service

POA; however, it is not yet clear how the ORB shall determine the references for other ob-
jects specified as an argument (again, see Table 11). In the context of the INS specification,
several command-line options were standardized that provide a common bootstrap mecha-
nism and make proprietary solutions obsolete.

The most important command-line argument is -ORBInitRef. With its help, one can o-
verwrite the pre-configured default values of an ORB. The general syntax is:

-ORBInitRef <ObjectID>=<ObjectURL>

The ObjectID corresponds to the name of the service that would be passed to an invoca-
tion of resolve_initial_references(). The ObjectURL is any of the CORBA
URLs just discussed in Section 17.3.1.

Some examples of use are:

-ORBInitRef NameService=IOR:00230021AB...
-ORBInitRef NameService=corbaloc::corbaserver.wifo.uni-
 mannheim.de:777/NameService

In addition, the command-line argument -ORBDefaultInitRef is admissible. Here, a
service name ObjectID is not specified. The option may be used to determine an initial
reference not known at start-up of the application. For example:

-ORBDefaultInitRef corbaloc::134.155.53.1:777

We now have the know-how necessary to discuss a first example. We provide detailed in-
formation on how the NS, the server, and the client applications have to be started for any of
the three ORBs that we use.

17.4 Binding and Resolving a Name with the Naming
Service

Our first example demonstrates how a server application can register the objects it manages
with the NS. Since the server’s business logic is of no significance here, the simple
Counter example from Sections 7.13 7.15 is perfectly sufficient. One should copy the IDL
file Counter.idl from \Examples\ModCounter to the directories \Examples\
NSCounter, which have to be created on the server and the client hosts. The IDL specifica-
tion should then be compiled as usual.

The servant implementation, CounterImpl.java, is again reused unchanged and should
be copied from \Examples\ModCounter\YourORB\Server\Count to the directory
\Examples\NSCounter\YourORB\Server\Count on the server host.

Changes are necessary in the server application where the server object is named and in the
GUIClient application where that name is resolved.

 17.4 Binding and Resolving a Name with the Naming Service 277

17.4.1 Implementing the Server Application
The server application, Server.java, should be stored in directory \Examples\NS-
Counter\YourORB\Server on the server host where it should be compiled as usual.

// Server.java

import Count.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import static java.lang.System.*;

public class Server {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 public Server(String[] args) {
 try {
 initializeORB(args);
 NamingContext nc = NamingContextHelper.narrow(
 orb.resolve_initial_references("NameService"));
 CounterImpl c_impl = new CounterImpl();
 Counter c = c_impl._this(orb);
 NameComponent[] name = new NameComponent[1];
 name[0] = new NameComponent();
 name[0].id = "Counter";
 name[0].kind = "IIOP";
 nc.rebind(name, c);
 out.println("Server started. Stop: Ctrl-C");
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String args[]) {
 new Server(args);
 }
}

Following the normal ORB initialization routine, the application calls the method resol-
ve_initial_references() with the argument "NameService" in order to obtain a
reference to the NS. The result is of type org.omg.CORBA.Object and has to be nar-
rowed to the actual type of the returned object, which is org.omg.CosNaming.Na-
mingContext. The NamingContextHelper’s method narrow() performs that cast.

In the next step, the usual Counter object c is created. The name "Counter.IIOP" is
then bound to that object. To that end, a NameComponent array name with one single

278 17 CORBA’s Naming Service

component is defined. According to the rules of the IDL to Java language mapping discussed
previously, the IDL sequence Name is mapped to the type NameComponent[]. The single
array component is a NameComponent object with variables id and kind, which have to
be provided with values. Subsequently, with a call of method rebind(), the name is
bound to the reference to the Counter object in the NS’s initial naming context nc.

Instead of writing the five statements above in full detail, we might, alternatively, abbreviate
the naming procedure by simply encoding one statement:

nc.rebind(new NameComponent[] {
 new NameComponent("Counter", "IIOP") }, c);

As discussed in Section 17.2, a call of method rebind() can throw several exceptions
(InvalidName, CannotProceed, and NotFound). These exceptions are “handled” in
a very superficial way in the example by simply printing the exception message and exiting
the application.

17.4.2 Implementing GUIClient

We reuse the original client application, GUIClient.java, and copy it from its directory
\Examples\Counter\YourORB\Client to the directories \Examples\NSCoun-
ter\YourORB\Client on the client hosts. The method getRef(), which reads the se-
rialized object reference of the server object, is no longer needed since we use the NS to ob-
tain that reference:

// GUIClient.java

import Count.*;
import java.awt.GridLayout;
import java.awt.event.*;
import java.util.Properties;
import javax.swing.*;
import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import static java.lang.System.*;

public class GUIClient extends JPanel {
 private Counter c;
 private ORB orb;
 private void initializeORB(String[] args) {
 ... as above in Section 7.13
 }
 private void createGUI() {
 ... as above in Section 7.13
 }
 public GUIClient(String[] args) {
 try {
 initializeORB(args);
 NamingContext nc = NamingContextHelper.narrow(
 orb.resolve_initial_references("NameService"));
 NameComponent[] name = new NameComponent[1];

 17.4 Binding and Resolving a Name with the Naming Service 279

 name[0] = new NameComponent();
 name[0].id = "Counter";
 name[0].kind = "IIOP";
 org.omg.CORBA.Object obj = nc.resolve(name);
 c = CounterHelper.narrow(obj);
 createGUI();
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 JFrame f = new JFrame("Counter Client");
 f.getContentPane().add(new GUIClient(args));
 f.pack();
 f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 f.setVisible(true);
 }
}

The statements concerning the NS are completely analogous to the server application. The
only difference is that, now, we invoke the method resolve() in order to retrieve the
server object in the initial naming context. If successful, the NamingContext method re-
solve() returns a reference of type org.omg.CORBA.Object, which in this example
has to be cast to the correct type Counter. The narrow() method of class Counter-
Helper is able to perform that cast.

Analogous to the server application, here, the five statements retrieving the server object may
be abbreviated by simply writing:

org.omg.CORBA.Object obj = nc.resolve(
 new NameComponent[] {
 new NameComponent("Counter", "IIOP") });

The distributed application is now complete. In the following sections, we describe how the
Naming Service, the server, and the clients are started in order to enable experimenting with
the running system.

17.4.3 Starting Naming Service, Server, and Client Applications
To execute the distributed NSCounter application, the different components have to be
started in the correct order. First, the NS is started as a separate process. Ideally, a dedicated
host on the network is available so that realistic conditions of a complex application system
can be simulated. As soon as the NS is running, the server application can be started on the
server host. The server creates a Counter object and registers it with the NS under the
name "Counter.IIOP". Then, one or more client applications may be started on their cli-
ent hosts. They first contact the NS to obtain a reference to the server object named "Coun-
ter.IIOP" and then invoke server operations as requested by their users.

280 17 CORBA’s Naming Service

The way the NS and the other parts of the application are started is product-specific. In the
next subsections, we therefore give some short instructions describing the necessary steps on
how to proceed for the three ORBs treated in this book. We decided to use the port number
777 for all examples concerning the NS since a uniform port number is helpful when differ-
ent ORB products are to be tested for interoperability on the NS, server, and client hosts.

17.4.3.1 Using the JDK

The JDK comes with a tool named orbd. This Object Request Broker Daemon provides a
“persistent” Naming Service, whose name graph is stored in a database with all the context
and object bindings it contains so that they survive terminating or restarting the NS. Invoking
orbd with the -ORBInitialPort or -port options allows specification the port the NS
uses. Normally, it is sufficient to enter the command

orbd –ORBInitialPort 777

in a command window when the NS shall be started and directed to port number 777. If no
port number is specified, orbd uses 1049 as the default value. If it is not possible to run the
NS on a separate host, orbd should at least be started in its own command window.

To enable the server and client applications to find the NS, they have to be informed on the
NS’s CORBA URL (see Section 17.3). Assuming that orbd was started on a host with the
DNS address corbaserver.wifo.uni-mannheim.de and that port number 777 was
specified, then the correct commands to start the server and the clients are

java Server -ORBInitRef NameService=
 corbaloc::corbaserver.wifo.uni-mannheim.de:777/
 NameService

and

java GUIClient -ORBInitRef NameService=
 corbaloc::corbaserver.wifo.uni-mannheim.de:777/
 NameService

respectively. These commands have to be entered on a single line without any line feeds. In
this way, the ORBs of the server and client applications are informed of the URL of the NS.
Instead of corbaserver.wifo.uni-mannheim.de, we could also enter the IP ad-
dress of the NS host, e.g., in our case 134.155.53.1. Should one test the application on a
single host, one may use the name localhost or the corresponding address 127.0.0.1.

17.4.3.2 Using JacORB

JacORB’s NS is implemented entirely in Java. If the JacORB ORB is installed properly ac-
cording to the descriptions given in Appendix E, then a batch file, ns.bat, and a shell
script, ns, which start the NS, are contained in the bin directory of the JacORB installation.
It is possible to specify a port number with the -DOAPort option. The invocation for port
777 then reads:

ns –DOAPort=777

 17.4 Binding and Resolving a Name with the Naming Service 281

After the NS is started, the server and the clients can be started in turn. The CORBA URLs
are provided in their standardized way. The only difference to the above JDK-related invoca-
tions is that, now, the Java interpreter is not invoked directly but, rather, through the batch
file or script jrun that we generated in Section 7.2. Server and clients are, therefore, run
with the commands

jrun Server -ORBInitRef NameService=
 corbaloc::corbaserver.wifo.uni-mannheim.de:777/
 NameService

for the server side and

jrun GUIClient -ORBInitRef NameService=
 corbaloc::corbaserver.wifo.uni-mannheim.de:777/
 NameService

for the client side, respectively. These commands have to be entered on a single line without
any line feeds.

17.4.3.3 Using OpenORB

Like JacORB’s Naming Service, the OpenORB Naming Service is implemented entirely in
Java. The OpenORB installation, however, does not come with a batch or script file that
could be used for NS start-up. It is recommended that one build one’s own batch file or
script. In the case of Windows NT/2000/XP, we could name that file nameserv.bat and
store it in the bin directory of the OpenORB installation. Assume, again, that OpenORB_
DIR and JDK_DIR denote the OpenORB and JDK installation directories. Then, this batch
file contains one single long line (without line breaks) that has to look like this:

java -cp "%OpenORB_DIR%\lib\openorb_tools-1.3.1.jar;
 %OpenORB_DIR%\lib\xerces.jar;
 %OpenORB_DIR%\lib\openorb-1.3.1.jar;
 %OpenORB_DIR%\lib\logkit.jar;
 %OpenORB_DIR%\lib\avalon-framework.jar;
 %OpenORB_DIR%\lib\openorb_ins-1.3.1.jar;
 %OpenORB_DIR%\lib\openorb_ins_plugins-1.3.1.jar;
 %OpenORB_DIR%\lib\openorb_tns-1.3.1.jar;
 %OpenORB_DIR%\lib\openorb_pss-1.3.0.jar;
 %JDK_DIR%\jre\lib\rt.jar"
 -Xbootclasspath:
 "%OpenORB_DIR%\lib\openorb_tools-1.3.1.jar;
 %OpenORB_DIR%\lib\xerces.jar;
 %OpenORB_DIR%\lib\openorb-1.3.1.jar;
 %OpenORB_DIR%\lib\logkit.jar;
 %OpenORB_DIR%\lib\avalon-framework.jar;
 %OpenORB_DIR%\lib\openorb_ins-1.3.1.jar;
 %OpenORB_DIR%\lib\openorb_ins_plugins-1.3.1.jar;
 %OpenORB_DIR%\lib\openorb_tns-1.3.1.jar;
 %OpenORB_DIR%\lib\openorb_pss-1.3.0.jar;
 %JDK_DIR%\jre\lib\rt.jar" org.openorb.ins.Server %*

282 17 CORBA’s Naming Service

Under Windows 95/98/ME, the above %* syntax is not yet supported and must be replaced
by a %1 %2 %3 ending. On Unix systems, the paths have to be adjusted and %* must be re-
placed by a "$@".

After these preparations, the OpenORB Naming Service is started through the command

nameserv -ORBPort=777

The option –ORBPort=777 causes the NS to use port number 777. If omitted, OpenORB
uses port 2001 by default.

The commands for starting the server and the clients, again, have to provide CORBA URLs
that direct the applications to the NS. As before, they are the one-liners

jrun Server -ORBInitRef NameService=
 corbaloc::corbaserver.wifo.uni-mannheim.de:777/
 NameService

and

jrun GUIClient -ORBInitRef NameService=
 corbaloc::corbaserver.wifo.uni-mannheim.de:777/
 NameService

respectively. This time, jrun is the batch or script file presented in Section 7.3.

If using OpenORB, note that, depending on one’s system, one should be prepared for the NS
to need a significant time for its initialization. It is recommendable to wait several seconds
before server or clients are started. Otherwise, although their implementation is correct and
ready to run, they might terminate with an error message because they could not yet connect
to the NS.

We were able to successfully run all 27 combinations of JDK, JacORB, and OpenORB NS,
server, and client applications following the above suggestions.

17.5 Utilizing Naming Contexts

In a distributed system, a large number of applications may take advantage of the functional-
ity of the NS concurrently. That is why, to avoid name clashes, the NS supports the concept
of NamingContexts, which enable the creation and utilization of hierarchical structures in
the NS’s name space. These naming contexts are built by operations such as bind_con-
text() or rebind_context(), the utilization of which is covered in the following ex-
ample.

We start from the NSCounter application presented in Section 17.4. Since we develop two
versions of the example, we create two analogous file structures on the server and client
hosts. We begin with the two directories, \Examples\NameContext\1 and \Examp-
les\NameContext\2, and copy the files Counter.idl and CounterImpl.java to
the usual subdirectories below 1 and 2. The changes affect the Server and the GUICli-

 17.5 Utilizing Naming Contexts 283

ent applications where communication with the NS is laid out. In this example, the object
reference to the Counter object is associated with the compound name "Examp-
les.Category/NameContext.Topic/Counter.Object", consisting of the two
context names "Examples.Category" and "NameContext.Topic" as well as the
simple name "Counter.Object".

17.5.1 Server Implementation Version 1

To adapt the server application, we first copy file Server.java from \Examples\NS-
Counter\YourORB\Server to the directory \Examples\NameContext\1\Your-
ORB\Server, modify it, and compile it as usual. Only the code in the Server constructor
needs to be changed and should become:

public Server(String[] args) {
 try {
 initializeORB(args);
 CounterImpl c_impl = new CounterImpl();
 Counter c = c_impl._this(orb);
 NamingContext nc1 = null, nc2 = null,
 root = NamingContextHelper.narrow(
 orb.resolve_initial_references("NameService"));
 try {
 nc1 = root.bind_new_context(new NameComponent[] {
 new NameComponent("Examples", "Category")
 });
 } catch (AlreadyBound ign) { }
 try {
 nc2 = nc1.bind_new_context(new NameComponent[] {
 new NameComponent("NameContext", "Topic")
 });
 } catch (AlreadyBound ign) { }
 nc2.rebind(new NameComponent[] {
 new NameComponent("Counter", "Object")
 }, c);
 out.println("Server started. Stop: Ctrl-C");
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
}

The listing shows how the naming graph is constructed below the initial naming context in
three steps. After obtaining the reference to the initial naming context, a new context binding
is created and its reference is returned from method bind_new_context(). The name
for that new context is provided through a NameComponent[] object with one single Na-
meComponent instance, which is created with the values "Examples" and "Categ-
ory" for its id and kind variables. Should this context binding already exist, an Alrea-
dyBound exception is thrown, which can safely be ignored. The procedure for creating the
second context binding is completely analogous to the first, this time, however, on the level

284 17 CORBA’s Naming Service

of the first context. Finally, on this second hierarchy level, we bind the object name "Coun-
ter.Object" to the Counter object.

Once the server is running and the names are bound, one can test the content of the name hi-
erarchy with JacORB’s lsns utility. It lists the contents of the NS that is referenced via a
CORBA URL. In our system the invocation is

lsns -ORBInitRef NameService=
 corbaloc::corbaserver.wifo.uni-mannheim.de:777/
 NameService

Usage of lsns is not restricted to the JacORB Naming Service; it is possible to use it to-
gether with orbd or with OpenORB’s NS.

It is obvious that building a name hierarchy in the above way is relatively tedious and in-
volves lots of code duplication because no complex operations exist for that purpose. For a
compound name, each hierarchy level must be created separately if it does not yet exist. In
the server version 2, below, we provide a reusable method that can simplify creation of name
hierarchies by automatically calling method bind_new_context() for us.

17.5.2 Server Implementation Version 2

The second version of the server application defines a method bindName(), which eases
binding of compound names considerably. Let us first inspect this method:

private void bindName(NameComponent[] name,
 org.omg.CORBA.Object obj) throws CannotProceed,
 InvalidName, NotFound,
 org.omg.CORBA.ORBPackage.InvalidName {
 NamingContext nc = NamingContextHelper.narrow(
 orb.resolve_initial_references("NameService"));
 NameComponent[] nctx = null;
 for (int i = 0; i < name.length - 1; i++)
 try {
 nctx = new NameComponent[] { name[i] };
 nc = nc.bind_new_context(nctx);
 } catch (AlreadyBound ex) {
 nc = (NamingContext)nc.resolve(nctx);
 }
 nc.rebind(new NameComponent[] {
 name[name.length - 1] }, obj);
 out.println("Server started. Stop: Ctrl-C");
}

It is assumed that the passed compound name is to be interpreted relative to the initial nam-
ing context. Therefore, at first, a reference to the initial naming context is determined. The
for statement then creates the context names top-down if they are not yet bound. If a name
is already bound, then, in the AlreadyBound handler, we simply proceed to the next hier-
archy level by invoking resolve(). After the for statement is executed, the necessary hi-
erarchy of context names is constructed and the object name can be bound.

With this method, the constructor of the Server class is significantly simplified:

 17.5 Utilizing Naming Contexts 285

public Server(String[] args) {
 try {
 initializeORB(args);
 CounterImpl c_impl = new CounterImpl();
 Counter c = c_impl._this(orb);
 NameComponent[] name = new NameComponent[] {
 new NameComponent("Examples", "Category"),
 new NameComponent("NameContext", "Topic"),
 new NameComponent("Counter", "Object")
 };
 bindName(name, c);
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
}

Now, a compound name can be created in a corresponding NameComponent array and one
invocation of bindName() binds all context names as well as the object name.

One should store this version of file Server.java in the directory \Examples\Name-
Context\2\YourORB\Server on the server host and compile it as usual.

17.5.3 Implementing GUIClient

The GUIClient application has no knowledge on the way the name of the Counter ob-
ject is bound. We create GUIClient.java once for both versions and store it in the direc-
tories \Examples\NameContext\1\YourORB\Client and \Examples\Name-
Context\2\YourORB\Client. Here is the code:

// GUIClient.java

import Count.*;
import java.awt.GridLayout;
import java.awt.event.*;
import java.util.Properties;
import javax.swing.*;
import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import static java.lang.System.*;

public class GUIClient extends JPanel {
 private Counter c;
 private ORB orb;
 private void initializeORB(String[] args) {
 ... as above in Section 7.13
 }
 private org.omg.CORBA.Object resolveName(
 NameComponent[] name) {
 org.omg.CORBA.Object obj = null;

286 17 CORBA’s Naming Service

 try {
 NamingContext nc = NamingContextHelper.narrow(
 orb.resolve_initial_references("NameService"));
 obj = nc.resolve(name);
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 return obj;
 }
 private void createGUI() {
 ... as above in Section 7.13
 }
 public GUIClient(String[] args) {
 try {
 initializeORB(args);
 org.omg.CORBA.Object obj = resolveName(
 new NameComponent[] {
 new NameComponent("Examples", "Category"),
 new NameComponent("NameContext", "Topic"),
 new NameComponent("Counter", "Object")
 });
 c = CounterHelper.narrow(obj);
 createGUI();
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 JFrame f = new JFrame("Counter Client");
 f.getContentPane().add(new GUIClient(args));
 f.pack();
 f.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 f.setVisible(true);
 }
}

Name resolution for the compound name of the server object is moved to its own method
resolveName(). It has an argument of type NameComponent[] and returns the refer-
ence to the object associated to that name. In the body of resolveName(), the
NamingContext method resolve() is called for the initial naming context. Note that
this method needs only one invocation; the problem of iterating through the compound name
step by step is solved in resolve()’s implementation.

17.5.4 Running the Application

Both variants of the example are run in the same way described for the first example in this
chapter. The distributed parts of the application have to be started in that order: Naming Ser-

 17.6 BindingIterators 287

vice, server application, and client applications. Depending on the ORB products to be em-
ployed, the hints given in Sections 17.4.3.1-17.4.3.3 should be followed.

17.6 BindingIterators

In Section 17.2, we saw that the NamingContext interface provides an operation
list(), which clients can invoke to iterate through a set of bindings in a naming context.
The operation’s IDL definition is:

void list(in unsigned long how_many,
 out BindingList bl, out BindingIterator bi);

The out parameter bl’s semantics should be directly clear. The BindingList is a se-
quence where each element is a Binding containing a Name of length 1 representing a sin-
gle NameComponent. Additionally, a Binding contains type information—nobject in
case of an object binding and ncontext for context bindings. The IDL type definitions be-
low are copied from module CosNaming:

enum BindingType { nobject, ncontext };

struct Binding
{
 Name binding_name;
 BindingType binding_type;
};
// Note: In struct Binding, binding_name is incorrectly
// defined as a Name instead of a NameComponent. This
// definition is unchanged for compatibility reasons.

typedef sequence <Binding> BindingList;

The comment indicates that, since a Binding always contains a name with only one com-
ponent, the type NameComponent would have been more appropriate here than the type
Name.

At first sight, the meaning of the list() parameters how_many and bi might be less ob-
vious. They were introduced because, in practice, it might happen that the number of bind-
ings in a context is huge. Returning the complete sequence of bindings in parameter bl in
one go might then be hardly practicable. Instead, it is possible to return only a subset of the
bindings together with an iterator that allows iterating through the complete set. The parame-
ter how_many determines the maximum number of bindings to return in bl, with any re-
maining bindings accessed through the returned BindingIterator bi. If bi returns the
value OBJECT_NIL, this indicates that bl contains all of the bindings in the context. A
non-zero value of how_many guarantees that bl contains at most how_many elements.
The implementation is free to return fewer than the number of bindings requested. The re-
turned bi value should therefore always be examined. If how_many is set to zero, it is re-
quested to use only the BindingIterator bi to access the bindings and the returned se
quence bl is empty.

288 17 CORBA’s Naming Service

The BindingIterator’s specification shows that this interface defines three operations:

interface BindingIterator
{
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many,
 out BindingList bl);
 void destroy();
};

If the context contains more than how_many parameters, the operation list() returns a
BindingIterator object. This iterator’s operation next_one() returns TRUE if at
least one more binding is available; that binding is returned in the out parameter b. It re-
turns FALSE if there are no more bindings to retrieve; the value of b then is indeterminate.
Operation next_n() returns, in the out parameter bl, at most how_many elements not
yet retrieved with list() or previous invocations of next_n() or next_one(). Opera-
tion next_n() returns FALSE with an empty list bl once all bindings have been retrieved.
Finally, the destroy() operation destroys the iterator and releases its resources.

To understand the realization of these concepts in Java, we inspect the following client ap-
plication. It uses a BindingList as well as a BindingIterator to list all top-level ob-
ject and context bindings in the initial naming context of the NS. One should store and com-
pile this example in directory \Examples\NSBinding\YourORB\Client on a client
host. When the ListClient is run, the hints given in Sections 17.4.3.1-17.4.3.3 should be
heeded. Also, one of the previous examples should be adapted such that the initial naming
context contains several context and object bindings. The ListClient then generates
some output and the BindingIterator performs some work.

// ListClient.java

import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import static java.lang.System.*;

public class ListClient {
 private ORB orb;
 private void initializeORB(String[] args) {
 Properties props = getProperties();
 orb = ORB.init(args, props);
 }
 private static void printBinding(Binding b) {
 out.print(b.binding_name[0].id + "." +
 b.binding_name[0].kind);
 switch (b.binding_type.value()) {
 case BindingType._nobject:
 out.println(" [an object]");
 break;
 case BindingType._ncontext:
 out.println(" [a context]");
 break;
 }
 }

 17.7 NamingContextExt Interface 289

 public ListClient(String[] args) {
 try {
 initializeORB(args);
 NamingContext nc = null;
 nc = NamingContextHelper.narrow(
 orb.resolve_initial_references("NameService"));
 BindingListHolder blh = new BindingListHolder();
 BindingIteratorHolder bih =
 new BindingIteratorHolder();
 nc.list(2, blh, bih);
 for (Binding b: blh.value)
 printBinding(b);
 BindingIterator bit = bih.value;
 if (bit != null) {
 BindingHolder bh = new BindingHolder();
 while (bit.next_one(bh))
 printBinding(bh.value);
 bit.destroy();
 }
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 new ListClient(args);
 }
}

After obtaining a reference to the initial naming context in the ListClient constructor,
we prepare the call to list() by creating a BindingListHolder and a BindingIt-
eratorHolder instance. Both holders are passed to list() together with the value 2,
rather arbitrarily chosen here, for the parameter how_many. Following the list() invoca-
tion, we call printBinding() for each binding in the BindingList. Recall that we
might find only one single list element although additional bindings are available. We, there-
fore, test whether the returned BindingIterator is a non-null reference and, in that
case, call next_one() as long as this method returns true. In order to obtain each next
binding, a BindingHolder instance must be created and passed to method next_
one().

17.7 NamingContextExt Interface

As indicated above, an Interoperable Naming Service was introduced in CORBA 3.0, which
replaced the earlier NS version. This specification defines the syntax for stringified names
and provides operations to convert a name in stringified form to its equivalent sequence form
and vice versa. It is made considerably easier for applications to conveniently deal with na-
mes.

A name consists of components that each have an id and a kind element. In the stringified
name representation, the dot ‘.’ separates the id and kind elements of a single name com-
ponent. Different name components of a name are separated by a ‘/’ character. The back-

290 17 CORBA’s Naming Service

slash ‘\’ escapes the reserved meaning of ‘/’, ‘.’, and ‘\’ in a stringified name. Table 13
summarizes the use of escaped characters:

Table 13: Reserved Uses of Characters in Stringified Names

Characters Meaning

. Separates the id and kind elements

/ Separates different name components

\. Escape sequence for the ‘.’ character

\/ Escape sequence for the ‘/’ character

\\ Escape sequence for the ‘\’ character

When composing stringified names, it is admissible to leave any of the two elements of a
name component but not both empty.

If a name component in a stringified name does not contain a ‘.’ character, the entire
component is interpreted as the id and the kind element is empty. A trailing ‘.’
character is not permitted.

If a name component in a stringified name starts with a ‘.’ character, the entire com-
ponent is interpreted as the kind and the id element is empty.

The single ‘.’ character is the only representation of a name component with empty
id and the kind elements. In our view, it hardly ever makes sense to use such an
empty name in practical applications.

The string "What/.a/nice/.name" therefore represents a valid name. The Naming-
ContextExt interface, subinterface of NamingContext, provides the operations re-
quired to use such stringified names.

interface NamingContextExt: NamingContext
{
 typedef string StringName;
 typedef string Address;
 typedef string URLString;

 StringName to_string(in Name n) raises(InvalidName);
 Name to_name(in StringName sn) raises(InvalidName);

 exception InvalidAddress {};

 URLString to_url(in Address addr, in StringName sn)
 raises(InvalidAddress, InvalidName);
 Object resolve_str(in StringName sn)
 raises(NotFound, CannotProceed, InvalidName,);
};

 17.7 NamingContextExt Interface 291

The operations to_string() and to_name() convert a Name to a stringified name and
vice versa. Operation to_name() is especially useful, as we see in the example below
since it may be invoked whenever developers need the internal name format but want to use
the string representation for reasons of simplicity. This holds as well for operation resol-
ve_str(), which performs a resolve in the same manner as the NamingContext inter-
face’s operation resolve(). It accepts a stringified name as an argument instead of a
Name. The last operation, to_url(), takes a CORBA URL and a stringified name as pa-
rameters and converts them to the URL format discussed briefly in Section 17.3.1.

17.7.1 An Example Using the NamingContextExt Interface

We, once again, take up the NamingContext example of Section 17.5. As before, only the
Server and the GUIClient applications need to be modified. And, we, again, write two
versions of the example. The preparatory steps are the same as described in Section 17.5; as
base directories, one could use \Examples\NSExt\1 and \Examples\NSExt\2.

17.7.2 Server Implementation Version 1

Here is the first version of the file Server.java. It should be stored in directory \Exam-
ples\NSExt\1\YourORB\Server and compiled there. Compared with the previous
version, only the Server’s constructor was modified:

// Server.java

import Count.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import static java.lang.System.*;

public class Server {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 public Server(String[] args) {
 try {
 initializeORB(args);
 CounterImpl c_impl = new CounterImpl();
 Counter c = c_impl._this(orb);
 NamingContextExt root =
 NamingContextExtHelper.narrow(
 orb.resolve_initial_references("NameService"));
 NamingContext nc1 = null, nc2 = null;
 try {
 nc1 = root.bind_new_context(
 root.to_name("Examples.Category"));
 } catch (AlreadyBound ign) { }

292 17 CORBA’s Naming Service

 try {
 nc2 = nc1.bind_new_context(
 root.to_name("NameContext.Topic"));
 } catch (AlreadyBound ign) { }
 nc2.rebind(root.to_name("Counter.Object"), c);
 out.println("Server started. Stop: Ctrl-C");
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String args[]) {
 new Server(args);
 }
}

The first obvious difference is that the initial reference to the NS, obtained by invoking me-
thod resolve_initial_references(), is now converted into the type Naming-
ContextExt instead of type NamingContext.

In the next statements, the NamingContextExt method to_name() is invoked in order
to be able to call bind_new_context() and rebind() with the stringified name repre-
sentations. For example, we now simply invoke

nc2.rebind(root.to_name("Counter.Object"), c);

where, before, we had to construct a NameComponent array:

nc2.rebind(new NameComponent[] {
 new NameComponent("Counter", "Object") }, c);

This abbreviation is even more helpful if compound names containing many context names
have to be created. Nevertheless, we encounter the same problem as in version one of the
server application presented in Section 17.5.1; the context names of a new not yet bound
compound name have to be bound step by step. Analogous to the second version of the
Server in Section 17.5.2, we now describe a more comfortable version declaring a method
that simplifies this task.

17.7.3 Server Implementation Version 2

The second version of our application, Server.java, includes a new method, bindNa-
meStr(), with a functionality adapting itself exactly to that of the method bindName()
described in Section 17.5.2. Different than method bindName(), however, bindName-
Str() expects a stringified name as its first argument instead of a NameComponent[].
As before, the second argument is the object reference to be associated with the name. This
method can be implemented as follows:

private void bindNameStr(String namestr,
 org.omg.CORBA.Object obj)
 throws CannotProceed, InvalidName, NotFound,

 17.7 NamingContextExt Interface 293

 org.omg.CORBA.ORBPackage.InvalidName {
 NamingContextExt ncext = NamingContextExtHelper.narrow(
 orb.resolve_initial_references("NameService"));
 NamingContext nc = ncext;
 StringTokenizer parser = new StringTokenizer(
 namestr, "/");
 int num = parser.countTokens();
 String name ="";
 for (int i = 0; i < num - 1; i++)
 try {
 name = parser.nextToken();
 nc = nc.bind_new_context(ncext.to_name(name));
 } catch (AlreadyBound ex) {
 nc = (NamingContext)nc.resolve(ncext.to_name(name));
 }
 nc.rebind(ncext.to_name(parser.nextToken()), obj);
 out.println("Server started. Stop: Ctrl-C");
}

One may recognize that the stepwise top-down construction of naming contexts occurs fol-
lowing the same principle applied before. The sole difference is that, now, the respective
parts of the name are determined with the help of a StringTokenizer, which separates
the string argument using the ‘/’ character as a delimiter. Invoking this method reduces the
code of the server constructor to

public Server(String[] args) {
 try {
 initializeORB(args);
 CounterImpl c_impl = new CounterImpl();
 Counter c = c_impl._this(orb);
 bindNameStr("Examples.Category/NameContext.Topic/"
 + "Counter.Object", c);
 rootPOA.the_POAManager().activate();
 orb.run();
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
}

One should store the modified server application in the directory \Examples\NS-
Ext\2\YourORB\Server on the server host and compile it as usual.

17.7.4 Implementing GUIClient

The client application presented in Section 17.5.3 may be directly used to communicate suc-
cessfully with both versions of the new server application. For the sake of completeness, we
show how the GUIClient can profit from invoking NamingContextExt’s method re-
solve_str() anyhow. At this point, it should be sufficient to present the new constructor
since the rest of the implementation is still copied from the original version:

294 17 CORBA’s Naming Service

public GUIClient(String[] args) {
 try {
 initializeORB(args);
 NamingContextExt ncext =
 NamingContextExtHelper.narrow(
 orb.resolve_initial_references("NameService"));
 c = CounterHelper.narrow(ncext.resolve_str(
 "Examples.Category/NameContext.Topic/"
 + "Counter.Object"));
 createGUI();
 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
}

One should store the modified GUIClient in directories \Examples\NSExt\1\Your-
ORB\Client or \Examples\NSExt\2\YourORB\Client on the client hosts and
compile them. The examples may then be run with the ORB-specific commands explained at
the beginning of this chapter.

17.8 Concluding Remarks

In this chapter, we have seen how the Naming Service may be used to solve the bootstrap-
ping problem of establishing initial connections between clients and servers. The Naming
Service is not only the most important CORBAservice but it is, as well, the first external
component discussed in this book that runs independently of the CORBA runtime. Once the
underlying principle is understood, readers should be able to familiarize themselves rapidly
with other CORBAservices relying on the respective OMG and vendor documentation. The
Event Service described in the next chapter is a further example for such a CORBAservice.

17.9 Exercises

1. Implement a Naming Service-based version of the Bank example (\Examples\DSI-
Bank). Use server-side skeletons, not the DSI.

2. Implement a Naming Service-based version of the Compute example (\Examples\
DIIAsynch). Use client-side stubs, not the DII.

3. Write a simple application that constructs a hierarchy of context names as shown below
(output was created by JacORB’s lsns utility).

You might pass the names in the args array of method main().

 17.9 Exercises 295

Europe.Continent/
 France.Country/
 Ile de France.Region/
 Paris.City/
 Germany.Country/
 Baden-Wuerttemberg.State/
 Mannheim.City/
America.Continent/
 USA.Country/
 California.State/
 Malibu.City/

4. Write an UnbindClient application, which unbinds object and context names pro-
vided in args[0]. Remove some of the bindings constructed with the application de-
veloped in Exercise 3 and control the results with the lsns utility.

18 CORBA’s Event Service

In the previous examples of this book, synchronous, invocation-based client/server commu-
nication between the objects in a distributed system was the focus of our attention. Typical
for this type of communication, the sender of a message is connected to exactly one receiver
via an object reference and the ORB. Also, normally, after sending the message, the sender
blocks until the receiver handles the message content and completed the invocation or, oth-
erwise, an exception is raised. To enable this direct way of communication, the sender must
know the IDL interface of the receiver.

Although this is the most commonly used communication paradigm, there are other types of
communication. For example, we saw above that CORBA makes it possible that remote op-
erations are invoked asynchronously. A further useful communication model besides the syn-
chronous invocation-based communication model is event-based communication. It differs
from the standard approach in that sender and receiver of event messages are decoupled from
each other, communicate only indirectly, and are not synchronized. Moreover, it is possible
that one or more senders direct event notifications to an arbitrary number of receivers. The
senders and receivers do not have to know where the other communication partners are lo-
cated or what their IDL interface is. This concept is realized by introducing a mediator, a
special object that functions as an event channel, which is positioned between the senders
and the receivers. The architecture is described in the well-known “Mediator” design pattern
(see, e.g., [GHJV95]). Senders as well as receivers communicate with the event channel ex-
clusively and, therefore, only have to know the event channel interface; or, they implement
their own interfaces for communication with it. They do not have to know each other’s iden-
tity or characteristics. Through the mediator, communication between the cooperating objects
is decoupled in such a way that it occurs indirectly, asynchronously, and anonymously.

It should be taken into consideration that, due to its indirection, event-based communication
is substantially less efficient than the traditional client/server model. By involving an event
channel, not only the number of invocations processed over the network is typically doubled,
but also the receiver of an event notification has to interpret the transmitted event informa-
tion to then execute suitable operations. Possibly, the problem arises that a multitude of vari-
ous event types is produced, not all of which are of equal importance to the event receiver.
As a consequence, events might unnecessarily be communicated via the network or objects
receive events in which they are not interested and which they cannot interpret. An event
channel has no filtering capability in the sense discussed above in Chapter 12.

Nevertheless, there are a number of reasons favorable to the event-based communication
model. The mediator architecture realizes the often intended “loose coupling” of indirectly
communicating objects, which might be useful if these objects do not know each other, if
sender objects cannot wait for processing of their messages, or if a larger number of receivers
should be reached, e.g., in an application implementing the “Publish-Subscribe” pattern. Due
to its loose coupling, it is a lot easier to change or extend an event-based system than a con-
ventional client/server system. Typical application scenarios may be found, for example, in

298 18 CORBA’s Event Service

the field of Enterprise Application Integration, where existing legacy systems need to be in-
tegrated with newly developed system components.

With its Event Service (ES) [OMG01], the OMG specified a basic CORBAservice, which
supports event-based communication. The ES lays the foundation for the new, considerably
more complex Notification Service [OMG04b], which remedies some of the ES’s shortcom-
ings through new and additional characteristics and functionalities and which is completely
downward compatible to the ES. Two examples of these shortcomings are that no filtering
mechanism for events exists or that no quality-of-service attributes, such as reliability of
event notification or number of events to be queued internally, may be specified. To under-
stand the basic concepts, however, it is fully sufficient to take a closer look at the ES and ex-
periment with examples employing it.

In the following, we describe the untyped event model, where any event information is in-
serted into an any. It should be noted here that, in addition to untyped events, the Event Ser-
vice specification also provides a typed event model, which might be advantageous in certain
application contexts. However, implementation and usage of that model is more complicated
and also, only very few ORB vendors, none of the ORBs we use in this book, today support
typed events; therefore, we do not discuss this event model, here.

18.1 Event Service Basics

The ES specification distinguishes event consumers and event suppliers. They communicate
with each other indirectly via the event channel, which is the central element of the ES and
plays the role of the mediator between suppliers and consumers. In principle, event informa-
tion flows from suppliers to consumers. However, that flow can be realized through various
communication models, which differ in the way the involved objects invoke operations in
order to pass on or to collect information. Figure 23 illustrates the different communication
styles. The first fact to note is that suppliers and consumers never interact directly: suppliers
communicate with proxy consumers created on their “end” of the event channel (more pre-
cisely, on the supplier host) and consumers communicate with proxy suppliers created on the
consumer “end” of the event channel (more precisely, on the consumer host). The way the
event channel internally directs events from proxy consumers to proxy suppliers is com-
pletely transparent to ES users. The following four styles of communication may be differen-
tiated:

the pure push model,

the pure pull model,

the hybrid pull/push model, and

the hybrid push/pull model.

In the pure push model, a supplier operates as a push supplier, connecting to the event chan-
nel through a proxy push consumer and actively “pushing” event data to the proxy consumer.
In this pure push model, the consumer operates as a push consumer, connects to the event
channel through a proxy push supplier, and passively waits until the proxy supplier delivers
(pushes) event data to it. The notification path is from the actual push supplier, through its

 18.1 Event Service Basics 299

proxy push consumer, through the event channel, to the proxy push supplier, and finally to
the push consumer itself. With the exception of the push() invocation on the proxy push
consumer in the supplier application, all other invocations on that path are automatically
managed by the ES.

In the pure pull model, the roles of active and passive objects are inverted. Here, it is the
consumer that drives the delivery of events. A consumer operates as a pull consumer, con-
necting to the event channel through a proxy pull supplier and actively “pulling” event data
from the proxy supplier. The supplier operates as a pull supplier, connects to the event chan-
nel through a proxy pull consumer, and passively waits until the proxy consumer requests
(pulls) event data from it. The notification path is now from the pull consumer, through the
proxy pull supplier and the event channel, to the proxy pull consumer, to the pull supplier.
There are two ways a pull consumer can obtain new event information. It can invoke an op-
eration, pull(), on its pull supplier, letting it block until the next event is available in the
event channel. The second option is to invoke an operation, try_pull(), also provided by
the proxy pull supplier, which returns immediately with the event information if available. If
no event is available, this second operation does not block but simply signals that the event
channel is empty. With the exception of the pull() or try_pull() invocation on the
proxy pull supplier in the consumer application, all other invocations on that path are auto-
matically managed by the ES.

Figure 23 also demonstrates that communication does not need to be either entirely push
model or pull model. To a supplier it is completely irrelevant whether the events it creates
are pulled from the event channel by a pull consumer, more precisely, its proxy pull supplier,
or whether the event channel pushes them to a push consumer, more precisely, its proxy push

Proxy
Pull

Supplier

Pull
Consumer

Push
Consumer

Proxy
Push

Supplier

Proxy
Pull

Consumer

Proxy
Push

Consumer

Pull
Supplier

Push
Supplier

Event Channel

Pure Pull or Push Model

Hybrid Pull/Push or Push/Pull Model

Flow of Event Information

Figure 23: Different Communication Models Supported by the Event Service

300 18 CORBA’s Event Service

supplier. And, to a consumer, it is equally irrelevant whether the events it receives are pushed
to the event channel by a push supplier, or, more precisely, its proxy push consumer, or
whether the event channel pulls them from a pull supplier, or, more precisely, its proxy pull
consumer. In the hybrid push/pull model, a push supplier indirectly connects to a pull con-
sumer. Vice versa, in the hybrid pull/push model, a pull supplier indirectly connects to a push
consumer. An event channel can also provide many-to-many communication. The channel
consumes events from one or more suppliers and supplies events to one or more consumers.
An event channel also supports mixed style communication by connecting to consumers and
suppliers using different communication models. It is the event channel’s responsibility to
allow such complicated interrelationships. CORBA application programmers do not have to
concern themselves with any internal details of the respective ES implementation.

18.2 IDL Specification of the Event Service

In the following, we examine the separate parts of the ES’s IDL specification more closely to
work out the foundations for the example application of this chapter. The complete IDL
specification of the Event Service can be found in Appendix D of this book.

18.2.1 Supplier and Consumer Interfaces

The interfaces of the four types of event suppliers and event consumers are defined in mod-
ule CosEventComm. They are designed in such a way that they may be connected immedi-
ately, without explicitly taking into consideration that an event channel serves as the media-
tor. Nevertheless, it is helpful to know that, as to be expected, the types of the proxy objects
mentioned above are subtypes of the interfaces discussed here. Thus, to their communication
partners, the proxies appear to be the actual suppliers or consumers for which they stand.
Here are the IDL definitions:

module CosEventComm
{
 exception Disconnected{};

 interface PushConsumer
 {
 void push(in any data) raises(Disconnected);
 void disconnect_push_consumer();
 };

 interface PushSupplier
 {
 void disconnect_push_supplier();
 };

 interface PullSupplier
 {
 any pull() raises(Disconnected);
 any try_pull(out boolean has_event)
 raises(Disconnected);
 void disconnect_pull_supplier();
 };

 18.2 IDL Specification of the Event Service 301

 interface PullConsumer
 {
 void disconnect_pull_consumer();
 };
};

Exceptions of type Disconnected are raised if an event supplier or consumer receives a
callback invocation by its corresponding proxy although it has already disconnected because
it no longer wants to supply or consume events.

A push-style consumer implements the PushConsumer interface to receive event data. A
supplier, more precisely, the ES’s proxy push supplier, communicates event data by invoking
the push() operation on the consumer and passing the event data in the any parameter.
The disconnect_push_consumer() operation is invoked by a supplier, the proxy
push supplier, to terminate the event communication and release resources used at the con-
sumer side.

The interface PushSupplier is the PushConsumer’s counterpart. Its sole operation,
disconnect_push_supplier(), is invoked by a consumer, the ES’s proxy push con-
sumer, to terminate the event communication and release resources used at the supplier side.
Further operations are not needed since the PushSupplier itself is the active part, invok-
ing operations on the proxy push consumer in order to deliver event data.

A pull-style supplier implements the PullSupplier interface to transmit event data. A
consumer, or, more precisely, the ES’s proxy pull consumer, requests event data from the
supplier by invoking either the pull() or the try_pull() operation on the supplier.
These two operations for actively requesting events were already mentioned in Section 18.1.
The pull() operation blocks until the event data is available or an exception is raised. It
returns the event data to the consumer in the any return result. The try_pull() operation
does not block: if the event data is available, it returns the event data and sets the
has_event parameter to true; if the event data is not available, it sets the has_event
parameter to false and the return value is undefined. The disconnect_pull_sup-
plier() operation terminates the event communication and releases resources used at the
supplier side.

Analogous to the PushSupplier in the push model, the PullConsumer is the active
part in the pull-style communication model; the interface, therefore, defines only one opera-
tion. The operation disconnect_pull_consumer() terminates the event communica-
tion and releases resources used at the consumer side.

18.2.2 The Event Channel’s Administration Interface
The event channel is the heart of the event service. In the module CosEventChannelAd-
min, the ES specification defines the three interfaces ConsumerAdmin, SupplierAd-
min, and EventChannel, providing operations that include bootstrap abilities to obtain
initial access to an ES implementation.

module CosEventChannelAdmin
{
 ...

302 18 CORBA’s Event Service

 interface ConsumerAdmin
 {
 ProxyPushSupplier obtain_push_supplier();
 ProxyPullSupplier obtain_pull_supplier();
 };

 interface SupplierAdmin
 {
 ProxyPushConsumer obtain_push_consumer();
 ProxyPullConsumer obtain_pull_consumer();
 };

 interface EventChannel
 {
 ConsumerAdmin for_consumers();
 SupplierAdmin for_suppliers();
 void destroy();
 };
};

Regardless of the relationship among suppliers and consumers, to establish a connection and
deliver events through the event channel, five steps must be taken.

An object of type EventChannel must be created and provided. Creation is ven-
dor-specific, see the example program below for OpenORB’s way of proceeding. No
suppliers or consumers are connected to the event channel upon creation.

The supplier must get a SupplierAdmin object from the event channel; this is ob-
tained by invoking the event channel’s for_suppliers() operation. In the same
way, the consumer invokes the event channel’s operation for_consumers() to
get a ConsumerAdmin object.

Suppliers and consumers must obtain their proxy objects from the admin object. De-
pending on the selected push or pull communication model, a supplier invokes opera-
tion obtain_push_consumer() or operation obtain_pull_consumer()
on the SupplierAdmin object to get a ProxyPushConsumer or a Proxy-
PullConsumer object, respectively. Analogously, a consumer invokes operation
obtain_push_supplier() or obtain_pull_supplier() on the Consu-
merAdmin object to get the ProxyPushSupplier or the ProxyPullSupp-
lier object it needs.

The supplier and consumer must be added to the event channel, more precisely, to
their proxy consumer and to their proxy supplier, respectively, via a connect call. The
connect operations are specified in the proxy interfaces discussed next.

Event data may now be transferred via invocations of push(), try_pull(), or
pull() on the respective proxy objects.

To complete discussion of the EventChannel interface, it should be mentioned here that
the destroy() operation destroys an EventChannel object when it is no longer needed.
Destroying an event channel destroys all ConsumerAdmin and SupplierAdmin objects
created via that channel.

 18.2 IDL Specification of the Event Service 303

18.2.3 Proxy Interfaces
Together with two exceptions, AlreadyConnected and TypeError, the different proxy
interfaces are also part of the definition of module CosEventChannelAdmin:

module CosEventChannelAdmin
{
 exception AlreadyConnected {};
 exception TypeError {};

 interface ProxyPushConsumer: CosEventComm::PushConsumer
 {
 void connect_push_supplier(
 in CosEventComm::PushSupplier push_supplier)
 raises(AlreadyConnected);
 };

 interface ProxyPullSupplier: CosEventComm::PullSupplier
 {
 void connect_pull_consumer(
 in CosEventComm::PullConsumer pull_consumer)
 raises(AlreadyConnected);
 };

 interface ProxyPullConsumer: CosEventComm::PullConsumer
 {
 void connect_pull_supplier(
 in CosEventComm::PullSupplier pull_supplier)
 raises(AlreadyConnected,TypeError);
 };

 interface ProxyPushSupplier: CosEventComm::PushSupplier
 {
 void connect_push_consumer(
 in CosEventComm::PushConsumer push_consumer)
 raises(AlreadyConnected, TypeError);
 };
 ...
};

An AlreadyConnected exception is raised whenever a proxy object is already connected
but a supplier or consumer, again, attempts to connect to it. The TypeError exception is
only relevant in applications using typed events.

The IDL specification of the proxy interfaces shows that these are defined as subtypes of the
supplier and consumer interfaces defined in module CosEventComm. Therefore, as in-
tended, objects implementing the proxy interfaces can be used as proxies for the event sup-
pliers or consumers and accept pull(), try_pull(), or push() invocations for them
on the event channel’s “other” side. The only new element in the proxy definitions is the
connect operation, which is invoked in step four of the five steps mentioned above. The
connect_push_supplier() operation connects a PushSupplier to a Proxy-
PushConsumer, which is in turn automatically connected to the event channel. The other
connect methods have corresponding semantics.

304 18 CORBA’s Event Service

Figure 24 gives a UML-based overview on all the interfaces discussed so far and demon-
strates their inheritance and usage dependencies.

18.3 Using OpenORB’s Event Service

Before we turn our attention to a practical example, we have to discuss some technical de-
tails on system setup. Since the JDK does not provide its own Event Service and since the
Event Service coming with JacORB’s current release (Version 2.2.1) caused several prob-
lems, we test the following example application exclusively with the OpenORB Event Ser-
vice. CORBA’s interoperability, nevertheless, allows us to translate and run all the other
components of the application with any of the three ORBs we used. Several additional pre-
paratory steps are required here. We explain them below for advanced readers; it is, however,
easiest to test the complete example with the OpenORB implementation.

The ES implementation of JacORB comes with a Unix start script, evc; whereas, a corre-
sponding batch file for Windows users is missing. It is relatively simple to write this batch
file using the Unix script as a basis. In addition to an ES, the JacORB implementation also
contains a Notification Service, which the OMG specified as a downward compatible succes-
sor of the ES. Readers interested in experimenting with this implementation are referred to
the JacORB documentation.

18.3.1 Setup and Start of OpenORB’s Event Service

Like the Naming Service, the Event Service coming with OpenORB is implemented entirely
in Java. Since the OpenORB installation does not supply any batch or script file starting the
service, such a file should be built and stored in the installation’s bin directory (see Section

<< interface >>
PushConsumer

push (in any)
disconnect_push_consumer()

<< interface >>
ProxyPushConsumer

connect_push_supplier
(in PushSupplier)

<< interface >>
ProxyPushSupplier

connect_push_consumer
(in PushConsumer)

<< interface >>
PushSupplier

disconnect_push_supplier()

<< interface >>
ProxyPullConsumer

connect_pull_supplier
(in PullSupplier)

<< interface >>
ProxyPullSupplier

connect_pull_consumer
(in PullConsumer)

<< interface >>
PullConsumer

disconnect_pull_consumer()

<< interface >>
PullSupplier

pull():any
try_pull (out boolean):any
disconnect_pull_supplier()

<< interface >>
ConsumerAdmin

obtain_push_supplier():ProxyPushSupplier
obtain_pull_supplier():ProxyPullSupplier

<< interface >>
SupplierAdmin

obtain_push_consumer():ProxyPushConsumer
obtain_pull_consumer():ProxyPullConsumer

<< interface >>
EventChannel

for_consumers():ConsumerAdmin
for_suppliers():SupplierAdmin
destroy()

Figure 24: Interfaces of the Event Service

 18.3 Using OpenORB’s Event Service 305

7.3). This file could be named eventserv.bat; it should contain the following long line
without line breaks (Windows NT/2000/XP):

java -cp "%OpenORB_DIR%\lib\openorb_tools-1.3.1.jar;
 %OpenORB_DIR%\lib\xerces.jar;
 %OpenORB_DIR%\lib\openorb-1.3.1.jar;
 %OpenORB_DIR%\lib\logkit.jar;
 %OpenORB_DIR%\lib\avalon-framework.jar;
 %OpenORB_DIR%\lib\openorb_event-1.3.0.jar;
 %OpenORB_DIR%\lib\openorb_pss-1.3.0.jar;
 %JDK_DIR%\jre\lib\rt.jar"
 -Xbootclasspath:
 "%OpenORB_DIR%\lib\openorb_tools-1.3.1.jar;
 %OpenORB_DIR%\lib\xerces.jar;
 %OpenORB_DIR%\lib\openorb-1.3.1.jar;
 %OpenORB_DIR%\lib\logkit.jar;
 %OpenORB_DIR%\lib\avalon-framework.jar;
 %OpenORB_DIR%\lib\openorb_event-1.3.0.jar;
 %OpenORB_DIR%\lib\openorb_pss-1.3.0.jar;
 %JDK_DIR%\jre\lib\rt.jar" org.openorb.event.Server %*

As above, OpenORB_DIR and JDK_DIR denote the installation directories of OpenORB
and the JDK, respectively.

An application that needs to use the ES determines an initial reference to an event channel
through an inquiry with the Naming Service. Therefore, a Naming Service must be running
before OpenORB’s ES may be started because the ES has to register with the NS. The Open-
ORB ES communicates with the JDK NS or the JacORB NS without any problems.

If we use the OpenORB implementation, the command line to start the NS is

nameserv -ORBPort=777

Then, the ES may be started with the usual reference to the NS’s host name and port number,
e.g.,

eventserv -ORBInitRef NameService=
 corbaloc::corbaserver.wifo.uni-mannheim.de:777/
 NameService

(one line, no line breaks). One has to replace the name corbaserver.wifo.uni-
mannheim.de by the name of the host the NS is running on; in the simplest scenario this
might be localhost or 127.0.0.1. As always, the NS can be directed to another port
number; then, 777 must be replaced as appropriate.

18.3.2 Using OpenORB’s ES with JDK’s ORB

It is possible to work primarily with the JDK but, nevertheless, to run the following example
with OpenORB’s ES. In order to do so, one has to download the necessary archives—the
jar files listed in the above batch file eventserv.bat—from the OpenORB web site
(see Appendix E) and write the batch file eventserv.bat. Since stubs and skeletons of
the ES are not bundled with the JDK, one also needs the files CosEventComm.idl and

306 18 CORBA’s Event Service

CosEventChannelAdmin.idl. One might copy these from this book (Appendix D); or,
if JacORB has been installed, one finds them in the installation’s subdirectory idl\omg.
Then, the stubs and skeletons can be generated with JDK’s IDL compiler. This step is only
necessary once and need not be repeated for each application using the ES; one might carry it
out in the \Examples\ESPush\JDK directory. The JDK IDL compiler does not treat the
#pragma prefix directives contained in the two IDL files correctly and does not support
the newer typeprefix at all. Therefore, the two IDL compiler options -pkgPrefix and
–pkgTranslate must be specified so that both invocations read (one line, no line breaks)

idlj -fall -pkgPrefix CosEventComm org.omg
 -pkgTranslate CosEventComm org.omg.CosEventComm
 CosEventComm.idl

idlj -fall -pkgPrefix CosEventChannelAdmin org.omg
 -pkgTranslate CosEventComm org.omg.CosEventComm
 CosEventChannelAdmin.idl

The resulting Java files are stored in a newly created directory, org.omg, and its subdirecto-
ries. They should now be compiled to class files with the invocations

javac org\omg\CosEventComm*.java
javac org\omg\CosEventChannelAdmin*.java

The content of org.omg should be packaged into a Java archive, ES.jar, with the com-
mand

jar –cvf ES.jar org

Since the java sources are not needed in the archive, one might delete them following the
javac commands and preceding the jar command. The archive then has to be specified in
the class path whenever javac or java are invoked. To that end, one should copy ES.jar
into the Publisher and Subscriber subdirectories. Alternatively, one might want to
store the archive in the JDK’s extensions directory JDK_DIR\jre\lib\ext; in that case,
no class path needs to be specified.

18.3.3 Using OpenORB’s ES with JacORB

If the JacORB implementation shall be used together with the OpenORB ES, then, as above,
the Java archives of the OpenORB implementation have to be obtained and the batch file
eventserv.bat must be written. But, in contrast to the JDK environment, it is now not
necessary to first translate the IDL specifications CosEventComm.idl and CosEvent-
ChannelAdmin.idl because the respective stubs and skeletons are already part of the ar-
chive jacorb.jar, which is included in the class paths of batch files jmake.bat and
jrun.bat.

The preparatory explanations are now complete and we can start with developing the exam-
ple application. As usual, we give hints referring to the specifics of the three ORBs that need
to be considered when translating and running the application.

 18.4 Push-Style Publish-Subscribe Example 307

18.4 Push-Style Publish-Subscribe Example

Since the pure push model seems to be the model most often come across in practice, in the
following, we implement an example application communicating in push-style. As we are
going to implement push communication on both sides of the event channel, only the ES in-
terfaces shaded in grey in Figure 25 are of significance, here.

The example realizes a simple Publish-Subscribe scenario similar to the one developed in
Chapter 12. A publisher application continually creates event objects by randomly generating
integer numbers between 0 and 1000, inserting them into an Any object, and pushing them to
the event channel. On the other side, one or more subscriber applications can connect to the
event channel to receive event objects from it. During start-up of the subscriber, a minimum
and maximum value can be specified, indicating the range of events in which the subscriber
is interested. In addition, the number of seconds the subscriber wants to be connected is pro-
vided as a third command-line argument.

18.4.1 IDL Interfaces for the Example
One should now write the IDL file Publish.idl and store it on the publisher (supplier)
and subscriber (consumer) hosts. Suitable directories would be \Examples\ESPush:

// Publish.idl

#include "\Examples\ESPush\CosEventComm.idl"

module PublishSubscribe
{
 interface Publisher : CosEventComm::PushSupplier{ };

<< interface >>
PushConsumer

push (in any)
disconnect_push_consumer()

<< interface >>
ProxyPushConsumer

connect_push_supplier
(in PushSupplier)

<< interface >>
ProxyPushSupplier

connect_push_consumer
(in PushConsumer)

<< interface >>
PushSupplier

disconnect_push_supplier()

<< interface >>
ProxyPullConsumer

connect_pull_supplier
(in PullSupplier)

<< interface >>
ProxyPullSupplier

connect_pull_consumer
(in PullConsumer)

<< interface >>
PullConsumer

disconnect_pull_consumer()

<< interface >>
PullSupplier

pull():any
try_pull (out boolean):any
disconnect_pull_supplier()

<< interface >>
ConsumerAdmin

obtain_push_supplier():ProxyPushSupplier
obtain_pull_supplier():ProxyPullSupplier

<< interface >>
SupplierAdmin

obtain_push_consumer():ProxyPushConsumer
obtain_pull_consumer():ProxyPullConsumer

<< interface >>
EventChannel

for_consumers():ConsumerAdmin
for_suppliers():SupplierAdmin
destroy()

Figure 25: Interfaces of the Event Service
Needed in a Pure Push Model Implementation

308 18 CORBA’s Event Service

 interface Subscriber : CosEventComm::PushConsumer
 {
 readonly attribute long min;
 readonly attribute long max;
 };
};

The superinterfaces CosEventCom::PushConsumer and CosEventCom::PushSu-
pplier are defined in file CosEventComm.idl. For reasons of simplicity, they should
also be stored in the \Examples\ESPush directories. While the Publisher needs no
additional attributes or operations, the Subscriber defines two attributes for its minimum
and maximum boundaries. One should now create the directory \Examples\ESPush\
YourORB\Publisher on the publisher host and \Examples\ESPush\YourORB\
Subscriber on the subscriber hosts. The file Publish.idl may then be translated as
follows:

JacORB and OpenORB
After setting the environment variables (see Sections 7.2 and 7.3), change the direc-
tory to the Publisher and Subscriber, respectively, and enter the commands

idl ..\..\Publish.idl for JacORB
 idl –d . ..\..\Publish.idl for OpenORB

JDK
The command to be entered in the respective Publisher or Subscriber direc-
tory is (in one line, without line breaks)

idlj -fall -pkgTranslate CosEventComm
 org.omg.CosEventComm ..\..\Publish.idl

18.4.2 Implementing the Event Supplier
We first implement the PublisherImpl servant and store it in the directory \Examp-
les\ESPush\YourORB\Publisher\PublishSubscribe on the publisher host.

// PublisherImpl.java

package PublishSubscribe;

import static java.lang.System.*;
import org.omg.CORBA.*;
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;

public class PublisherImpl extends PublisherPOA {
 private ORB orb;
 private ProxyPushConsumer ppc;
 private boolean disconn = false;
 public PublisherImpl(ORB orb, ProxyPushConsumer ppc) {
 this.orb = orb;

 18.4 Push-Style Publish-Subscribe Example 309

 this.ppc = ppc;
 }
 public void publish(int value) {
 Any message = orb.create_any();
 message.insert_long(value);
 try {
 ppc.push(message);
 } catch (Disconnected ex) {
 out.println("ProxyPushConsumer is disconnected"
 + " from ES");
 exit(0);
 }
 }
 public void disconnect_push_supplier() {
 if (disconn)
 throw new OBJECT_NOT_EXIST();
 disconn = true;
 ppc.disconnect_push_consumer();
 out.println("Disconnected Publisher");
 }
}

The only method that needs to be implemented due to the fact that we defined the IDL inter-
face Publisher as an IDL subinterface of CosEventComm::PushSupplier is the
method disconnect_push_supplier(). More precisely, we implement the inheri-
tance approach and declare class PublisherImpl to be a subclass of PublisherPOA.
The class PublisherPOA implements the Java interface PublisherOperations,
which in turn extends the Java interface org.omg.CosEventComm.PushSupplier-
Operations, and the disconnect method is declared in that interface.

In our example, calling disconnect_push_supplier() causes the implementation to
call the disconnect_push_consumer() operation on the corresponding ProxyPu-
shConsumer to release resources symmetrically. With the disconn variable, we avoid
infinite recursive calls to these disconnect operations. The most interesting part of the ser-
vant, however, is the local method publish(). The publisher (supplier) communicates
event data by invoking this method and passing event data as an int value. In the body of
method publish(), the push() method is invoked on the ProxyPushConsumer; be-
fore the int value can be passed, it has to be inserted into an Any instance. The Discon-
nected exception, which may be thrown when calling push(), is handled in a very simple
manner.

18.4.3 Implementing the Publisher Application

The publisher application of our example, PublisherApp, is responsible for establishing a
connection and creating and delivering events through the event channel corresponding to the
five customary steps discussed in Section 18.2.2. One should store the file Publisher-
App.java on the publisher host in directory \Examples\ESPush\YourORB\Pub-
lisher and translate it as usual.

310 18 CORBA’s Event Service

// PublisherApp.java

import PublishSubscribe.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import org.omg.CosNaming.*;
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
import static java.lang.System.*;

public class PublisherApp {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }
 private void businessLogic(final PublisherImpl p_impl) {
 new Thread(new Runnable() {
 public void run() {
 for (;;) {
 int message = (int) (1000*Math.random());
 out.println("Pushing message: " + message);
 p_impl.publish(message);
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ign) { }
 }
 }
 }).start();
 }
 public PublisherApp(String[] args) {
 try {
 initializeORB(args);
 new Thread(new Runnable() {
 public void run() {
 orb.run();
 }
 }).start();
 NamingContextExt nc = NamingContextExtHelper.narrow(
 orb.resolve_initial_references("NameService"));
 EventChannel ec = EventChannelHelper.narrow(
 nc.resolve_str(
 "COS/EventService/DefaultEventChannel"));
 SupplierAdmin sa = ec.for_suppliers();
 ProxyPushConsumer ppc = sa.obtain_push_consumer();
 PublisherImpl p_impl = new PublisherImpl(orb, ppc);
 Publisher p = p_impl._this(orb);
 try {
 ppc.connect_push_supplier(
 PushSupplierHelper.narrow(p));
 } catch(AlreadyConnected ex) { }
 out.println("Publisher started. Stop: Ctrl-C");
 rootPOA.the_POAManager().activate();
 businessLogic(p_impl);

 18.4 Push-Style Publish-Subscribe Example 311

 } catch (BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch (Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 new PublisherApp(args);
 }
}

When working with the JDK, the archive created according to the outline presented in Sec-
tion 18.3.2 must be added to the class path; therefore, the Java compiler is invoked with the
command

javac –classpath .;ES.jar PublisherApp.java

unless the archive was copied to the extensions directory.

It can be seen that the publisher application in turn executes the five steps mentioned above.
Before we can begin this sequence of steps, a reference to the NS is obtained because the ini-
tial reference to the ES is looked up with the NS. CORBA does not define a standard name
for the ES so step one is vendor-specific, restricting portability of the application. Open-
ORB’s ES provides a default EventChannel object, which can be obtained by resolving
the stringified name "COS/EventService/DefaultEventChannel" with the NS.

From the event channel object, one can request a SupplierAdmin object (step two); from
this, a ProxyPushConsumer object is obtained (step three). An instance of the publisher
servant and the corresponding Publisher object are created. This object plays the role of a
PushSupplier and is connected to the ProxyPushConsumer (step four).

A notable difference to previous examples is that the orb.run() statement is executed in
its own thread; it appears earlier in the code and directly follows the ORB’s initialization.
The intention is, first, to prevent the publisher from trying to push events to the event chan-
nel immediately after being connected to it, possibly before the ORB is running. Second, an
orb.run() statement blocks its caller, waiting for incoming requests, so there is no other
way to reach the statements following it (see Section 6.2.4).

In method businessLogic(), in the for statement, each second, a new publication
event is generated and published. Invoking publish() on the PublisherImpl, finally,
results in an invocation of method push() on the ProxyPushConsumer (step five).

Figure 26 illustrates important method invocations of the above-described sequence of steps
in the form of a UML sequence diagram. Determination of the initial references was omitted
here.

312 18 CORBA’s Event Service

18.4.4 Implementing the Event Consumer
On the consumer side of the event channel, the Subscriber objects wait for publication
events being pushed to them. One should store the subscriber servant class, Subscriber-
Impl.java, in directory \Examples\ESPush\YourORB\Subscriber\Publish-
Subscribe on the subscriber hosts.

// SubscriberImpl.java

package PublishSubscribe;

import static java.lang.System.*;
import org.omg.CORBA.*;
import org.omg.CosEventChannelAdmin.*;

public class SubscriberImpl extends SubscriberPOA {
 private ProxyPushSupplier pps;
 private int min, max;
 private boolean disconn = false;
 public int min() {
 return min;
 }
 public int max() {
 return max;
 }
 public SubscriberImpl(ProxyPushSupplier pps,
 int min, int max) {
 this.pps = pps;
 this.min = min;
 this.max = max;
 }
 public void push(Any message) {
 int value = message.extract_long();
 if (min > value || value > max)
 return;

p_impl:PublisherImpl ec:EventChannel sa:SupplierAdmin ppc:ProxyPushConsumer

obtain_push_consumer()

connect_push_supplier(p)

ppc

:PublisherApp

for_suppliers()

sa

push()

Figure 26: UML Sequence Diagram Presenting the Steps Required in the
Publisher Application to Initiate Event Communication with the Event Channel

 18.4 Push-Style Publish-Subscribe Example 313

 out.println("Received message: " + value);
 }
 public void disconnect_push_consumer() {
 if (disconn)
 throw new OBJECT_NOT_EXIST();
 disconn = true;
 pps.disconnect_push_supplier();
 out.println("Disconnected Subscriber");
 }
}

The only remarkable feature of this implementation is that we defined the IDL interface
Publisher as an IDL subinterface of CosEventComm::PushConsumer; therefore,
bodies for the two methods push() and disconnect_push_consumer() have to be
implemented. Note that both methods are declared in the Java interface org.omg.CosEv-
entComm.PushConsumerOperations. The push() method is called by the event
channel if new events are available. Here, we simply extract the published int value and
print it if it lies in the interval [min, max] in which the subscriber is interested. Equivalent to
the procedure on the supplier side of the event channel, calling disconnect_push_con-
sumer() causes the implementation to call the disconnect_push_supplier() op-
eration on the corresponding ProxyPushSupplier to release resources.

18.4.5 Implementing the Subscriber Application

Finally, the subscriber application remains to be implemented. It is responsible for establish-
ing the connection on the subscriber side and for receiving events from the channel. Similar
to Exercise 3 in Chapter 12, we introduce a third command-line argument that specifies the
duration (in seconds) of a subscription; the time a subscriber is interested in receiving publi-
cation events.

Again, we follow the five customary steps discussed in Section 18.2.2. One should store the
file SubscriberApp.java on the subscriber hosts in the directories \Examples\ES-
Push\YourORB\Subscriber and translate it as usual.

// SubscriberApp.java

import PublishSubscribe.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import org.omg.CosNaming.*;
import org.omg.CosEventChannelAdmin.*;
import static java.lang.System.*;
import static java.lang.Math.*;

public class SubscriberApp {
 private ORB orb;
 private POA rootPOA;
 private void initializeORB(String[] args) {
 ... as above in Section 8.2
 }

314 18 CORBA’s Event Service

 public SubscriberApp(String[] args) {
 try {
 int lo = Integer.valueOf(args[0]),
 hi = Integer.valueOf(args[1]);
 final int min = min(max(lo, 0), min(hi, 1000)),
 max = max(max(lo, 0), min(hi, 1000));
 initializeORB(args);
 new Thread(new Runnable() {
 public void run() {
 orb.run();
 }
 }).start();
 NamingContextExt nc = NamingContextExtHelper.narrow(
 orb.resolve_initial_references("NameService"));
 EventChannel ec = EventChannelHelper.narrow(
 nc.resolve_str(
 "COS/EventService/DefaultEventChannel"));
 ConsumerAdmin ca = ec.for_consumers();
 ProxyPushSupplier pps = ca.obtain_push_supplier();
 SubscriberImpl s_impl =
 new SubscriberImpl(pps, min, max);
 Subscriber s = s_impl._this(orb);
 try {
 pps.connect_push_consumer(s);
 }
 catch(AlreadyConnected ex) { }
 out.println("Activating Subscriber filtering with "
 + min + " and " + max);
 rootPOA.the_POAManager().activate();
 try {
 Thread.sleep(1000*Integer.valueOf(args[2]));
 } catch(InterruptedException ign) { }
 pps.disconnect_push_supplier();
 orb.shutdown(true);
 } catch(BAD_PARAM ex) {
 out.println("Narrowing failed");
 exit(3);
 } catch(Exception ex) {
 out.println("Exception: " + ex.getMessage());
 exit(1);
 }
 }
 public static void main(String[] args) {
 if (args.length < 3) {
 out.println("Start with"
 + "\n\tjrun SubscriberApp <min> <max>"
 + " <subscriptiontime> -ORBInitRef...,"
 + " 0 <= min < max <= 1000");
 return;
 }
 new SubscriberApp(args);
 }
}

18.4 Push-Style Publish-Subscribe Example 315

When working with the JDK, the archive created according to the outline presented in Sec-
tion 18.3.2 must be added to the class path; therefore, the Java compiler is invoked with the
command

javac –classpath .;ES.jar SubscriberApp.java

unless the archive was copied to the extensions directory.

To a large extent, the structure of the application is symmetrical to the publisher application.
Again, the thread construction starting orb.run() might deserve some explanation. Simi-
lar to the publisher application, we now want to prevent the event channel from pushing
events to the subscriber before the ORB is running. Once the ORB is running, and all con-
nections are set up, we wait until the specified subscription time expires, disconnect supplier
from consumer, and terminate the application.

Figure 27 illustrates important method invocations between the objects involved on the sub-
scriber side in the form of a UML sequence diagram (also see Figure 26).

18.4.6 Running the Application

To run and test the complete application, the different components have to be started in this
order:

Start a Naming Service. Sections 17.4.3.1 17.4.3.3 give details on how to do this for
JDK, JacORB, and OpenORB.

Start OpenORB’s Event Service and direct it to the running Naming Service with the
-ORBInitRef command-line argument as described in Section 18.3.1.

Start the publisher application in the usual way with any of the three ORBs. Provide
the reference to the Naming Service with an -ORBInitRef command-line argu-
ment.

obtain_push_supplier()

connect_push_consumer(s)

pps

for_consumers()

ca

push()

:SubscriberApp s_impl:SubscriberImpl ec:EventChannel ca:ConsumerAdmin pps:ProxyPushSupplier

Figure 27: UML Sequence Diagram Presenting the Steps Required in the
Subscriber Application to Initiate Event Communication with the Event Channel

316 18 CORBA’s Event Service

If using the JDK, the ES archive created as outlined in Section 18.3.2 has to be speci-
fied in the class path; therefore, unless the archive was copied to the extensions direc-
tory, the Java interpreter is invoked with the command

 javac –cp .;ES.jar PublisherApp –ORBInitRef...

Start the subscriber applications in the usual way with any of the three ORBs. Provide
the min and max values and the reference to the Naming Service in the command
line (-ORBInitRef).

If using the JDK, the ES archive created as outlined in Section 18.3.2 has to be speci-
fied in the class path; therefore, unless the archive was copied to the extensions direc-
tory, the Java interpreter is invoked with the following command (0, 99, and 5 are ex-
ample values for the subscriber’s minimum and maximum boundaries and the sub-
scription time)

 javac –cp .;ES.jar SubscriberApp 0 99 5 –ORBInitRef...

All four components of the application can run on different hosts on the network. The object
references are determined and provided by the NS as needed. For our applications, we nor-
mally use one dedicated host that runs all CORBAservices.

18.5 Exercises

1. Once the ES is running, use JacORB’s lsns utility to see which ES-related objects are
provided and how they are named (see Section 17.5.1).

2. Experiment with the push-style Publish-Subscribe example. What happens if the sub-
scriber needs some time to digest the events it receives? You might, for example, include
a Thread.sleep(1500) or a Thread.sleep(2500) statement in the Sub-
scriberImpl’s push() method.

3. Write a new version of the Publish-Subscribe example implementing a pure pull model.
Now, only the ES interfaces shaded in grey in Figure 28 are of significance.

In the SubscriberImpl, declare a method receive() that pulls an Any from the
ProxyPullSupplier and prints the received event value. In the Subscriber-
App’s businessLogic(), actively call receive() continually, for example, once
per second.

In the PublisherImpl, one has to provide implementations for the methods pull()
and try_pull() that the event channel needs to call. Similar to the push example, one
might return a random int value from pull(). And, for the try_pull() method,
we suggest an implementation that simply sets the holder.value to true and re-
turns the result of a pull() invocation. In the PublisherApp, it is sufficient to con-
nect the publisher to the proxy pull consumer.

 18.5 Exercises 317

4. Experiment with the pull-style Publish-Subscribe example. What happens if the publisher
needs some time to prepare the events it publishes? You might, for example, include a
Thread.sleep(500) or a Thread.sleep(1500) statement in the Publisher-
Impl’s pull() method.

5. Write a new version of the Publish-Subscribe example implementing a hybrid pull/push
model. In this version, the Publisher acts as a PullSupplier while Subscri-
bers act as a PushConsumers. Recycle as much as possible from earlier implementa-
tions.

<< interface >>
PushConsumer

push (in any)
disconnect_push_consumer()

<< interface >>
ProxyPushConsumer

connect_push_supplier
(in PushSupplier)

<< interface >>
ProxyPushSupplier

connect_push_consumer
(in PushConsumer)

<< interface >>
PushSupplier

disconnect_push_supplier()

<< interface >>
ProxyPullConsumer

connect_pull_supplier
(in PullSupplier)

<< interface >>
ProxyPullSupplier

connect_pull_consumer
(in PullConsumer)

<< interface >>
PullConsumer

disconnect_pull_consumer()

<< interface >>
PullSupplier

pull():any
try_pull (out boolean):any
disconnect_pull_supplier()

<< interface >>
ConsumerAdmin

obtain_push_supplier():ProxyPushSupplier
obtain_pull_supplier():ProxyPullSupplier

<< interface >>
SupplierAdmin

obtain_push_consumer():ProxyPushConsumer
obtain_pull_consumer():ProxyPullConsumer

<< interface >>
EventChannel

for_consumers():ConsumerAdmin
for_suppliers():SupplierAdmin
destroy()

Figure 28: Interfaces of the Event Service
Needed in a Pure Pull Model Implementation

Appendix A – IDL Grammar

(1) <specification> ::= <import>* <definition>+
(2) <definition> ::= <type_dcl> “;”
 | <const_dcl> “;”

| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”
| <event> “;”
| <component> “;”
| <home_dcl> “;”

(3) <module> ::= “module” <identifier> “{” <definition>+ “}”
(4) <interface> ::= <interface_dcl>
 | <forward_dcl>
(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
(7) <interface_header> ::= [“abstract” | “local”] “interface” <identifier>
 [<interface_inheritance_spec>]
(8) <interface_body> ::= <export>*
(9) <export> ::= <type_dcl> “;”
 | <const_dcl> “;”
 | <except_dcl> “;”
 | <attr_dcl> “;”
 | <op_dcl> “;”
 | <type_id_dcl> “;”
 | <type_prefix_dcl> “;”
(10) <interface_inheritance_spec> ::= “:” <interface_name>
 { “,” <interface_name> }*
(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>
 | “::” <identifier>
 | <scoped_name> “::” <identifier>
(13) <value> ::= (<value_dcl> | <value_abs_dcl>
 | <value_box_dcl> | <value_forward_dcl>)
(14) <value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>
(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>
 [<value_inheritance_spec>]
 “{” <export>* “}”
(17) <value_dcl> ::= <value_header> “{” <value_element>* “}”
(18) <value_header> ::= [“custom”] “valuetype” <identifier>
 [<value_inheritance_spec>]
(19) <value_inheritance_spec> ::= [“:” [“truncatable”] <value_name>
 { “,” <value_name> }*]

320 Appendix A – IDL Grammar

 [“supports” <interface_name>
 { “,” <interface_name> }*]
(20) <value_name> ::= <scoped_name>
(21) <value_element> ::= <export> | < state_member> | <init_dcl>
(22) <state_member> ::= (“public” | “private”)
 <type_spec> <declarators> “;”
(23) <init_dcl> ::= “factory” <identifier>
 “(” [<init_param_decls>] “)”
 [<raises_expr>] “;”
(24) <init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec>
 <simple_declarator>
(26) <init_param_attribute> ::= “in”
(27) <const_dcl> ::= “const” <const_type>
 <identifier> “=” <const_exp>
(28) <const_type> ::= <integer_type>
 | <char_type>
 | <wide_char_type>
 | <boolean_type>
 | <floating_pt_type>
 | <string_type>
 | <wide_string_type>
 | <fixed_pt_const_type>
 | <scoped_name>
 | <octet_type>
(29) <const_exp> ::= <or_expr>
(30) <or_expr> ::= <xor_expr>
 | <or_expr> “|” <xor_expr>
(31) <xor_expr> ::= <and_expr>
 | <xor_expr> “^” <and_expr>
(32) <and_expr> ::= <shift_expr>
 | <and_expr> “&” <shift_expr>
(33) <shift_expr> ::= <add_expr>
 | <shift_expr> “>>” <add_expr>
 | <shift_expr> “<<” <add_expr>
(34) <add_expr> ::= <mult_expr>
 | <add_expr> “+” <mult_expr>
 | <add_expr> “-” <mult_expr>
(35) <mult_expr> ::= <unary_expr>
 | <mult_expr> “*” <unary_expr>
 | <mult_expr> “/” <unary_expr>
 | <mult_expr> “%” <unary_expr>
(36) <unary_expr> ::= <unary_operator> <primary_expr>
 | <primary_expr>
(37) <unary_operator> ::= “-”
 | “+”
 | “~”
(38) <primary_expr> ::= <scoped_name>
 | <literal>
 | “(” <const_exp> “)”
(39) <literal> ::= <integer_literal>
 | <string_literal>

 Appendix A – IDL Grammar 321

 | <wide_string_literal>
 | <character_literal>
 | <wide_character_literal>
 | <fixed_pt_literal>
 | <floating_pt_literal>
 | <boolean_literal>
(40) <boolean_literal> ::= “TRUE”
 | “FALSE”
(41) <positive_int_const> ::= <const_exp>
(42) <type_dcl> ::= “typedef” <type_declarator>
 | <struct_type>
 | <union_type>
 | <enum_type>
 | “native” <simple_declarator>
 | <constr_forward_decl>
(43) <type_declarator> ::= <type_spec> <declarators>
(44) <type_spec> ::= <simple_type_spec>
 | <constr_type_spec>
(45) <simple_type_spec> ::= <base_type_spec>
 | <template_type_spec>
 | <scoped_name>
(46) <base_type_spec> ::= <floating_pt_type>
 | <integer_type>
 | <char_type>
 | <wide_char_type>
 | <boolean_type>
 | <octet_type>
 | <any_type>
 | <object_type>
 | <value_base_type>
(47) <template_type_spec> ::= <sequence_type>
 | <string_type>
 | <wide_string_type>
 | <fixed_pt_type>
(48) <constr_type_spec> ::= <struct_type>
 | <union_type>
 | <enum_type>
(49) <declarators> ::= <declarator> { “,” <declarator> }*
(50) <declarator> ::= <simple_declarator>
 | <complex_declarator>
(51) <simple_declarator> ::= <identifier>
(52) <complex_declarator> ::= <array_declarator>
(53) <floating_pt_type> ::= “float”
 | “double”
 | “long” “double”
(54) <integer_type> ::= <signed_int>
 | <unsigned_int>
(55) <signed_int> ::= <signed_short_int>
 | <signed_long_int>
 | <signed_longlong_int>
(56) <signed_short_int> ::= “short”
(57) <signed_long_int> ::= “long”

322 Appendix A – IDL Grammar

(58) <signed_longlong_int> ::= “long” “long”
(59) <unsigned_int> ::= <unsigned_short_int>
 | <unsigned_long_int>
 | <unsigned_longlong_int>
(60) <unsigned_short_int> ::= “unsigned” “short”
(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”
(68) <object_type> ::= “Object”
(69) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”
(70) <member_list> ::= <member>+
(71) <member> ::= <type_spec> <declarators> “;”
(72) <union_type> ::= “union” <identifier> “switch”
 (” <switch_type_spec> “)”
 “{” <switch_body> “}”
(73) <switch_type_spec> ::= <integer_type>
 | <char_type>
 | <boolean_type>
 | <enum_type>
 | <scoped_name>
(74) <switch_body> ::= <case>+
(75) <case> ::= <case_label>+ <element_spec> “;”
(76) <case_label> ::= “case” <const_exp> “:”
 | “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>
(78) <enum_type> ::= “enum” <identifier>
 “{” <enumerator> { “,” <enumerator> }* “}”
(79) <enumerator> ::= <identifier>
(80) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,”
 <positive_int_const> “>”
 | “sequence” “<” <simple_type_spec> “>”
(81) <string_type> ::= “string” “<” <positive_int_const> “>”
 | “string”
(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
 | “wstring”
(83) <array_declarator> ::= <identifier> <fixed_array_size>+
(84) <fixed_array_size> ::= “[” <positive_int_const> “]”
(85) <attr_dcl> ::= <readonly_attr_spec>
 | <attr_spec>
(86) <except_dcl> ::= “exception” <identifier> “{” <member>* “}”
(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>
 <identifier> <parameter_dcls>
 [<raises_expr>] [<context_expr>]
(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>
 | “void”
(90) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> }* “)”
 | “(” “)”

 Appendix A – IDL Grammar 323

(91) <param_dcl> ::= <param_attribute> <param_type_spec>
 <simple_declarator>
(92) <param_attribute> ::= “in”
 | “out”
 | “inout”
(93) <raises_expr> ::= “raises” “(” <scoped_name>
 { “,” <scoped_name> }* “)”
(94) <context_expr> ::= “context” “(” <string_literal>
 { “,” <string_literal> }* “)”
(95) <param_type_spec> ::= <base_type_spec>
 | <string_type>
 | <wide_string_type>
 | <scoped_name>
(96) <fixed_pt_type> ::= “fixed” “<” <positive_int_const> “,”
 <positive_int_const> “>”
(97) <fixed_pt_const_type> ::= “fixed”
(98) <value_base_type> ::= “ValueBase”
(99) <constr_forward_decl> ::= “struct” <identifier>
 | “union” <identifier>
(100) <import> ::= “import” <imported_scope> “;”
(101) <imported_scope> ::= <scoped_name> | <string_literal>
(102) <type_id_dcl> ::= “typeid” <scoped_name> <string_literal>
(103) <type_prefix_dcl> ::= “typeprefix” <scoped_name>
 <string_literal>
(104) <readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>
 <readonly_attr_declarator>
(105) <readonly_attr_declarator > ::= <simple_declarator> <raises_expr>
 | <simple_declarator>
 { “,” <simple_declarator> }*
(106) <attr_spec> ::= “attribute” <param_type_spec>
 <attr_declarator>
(107) <attr_declarator> ::= <simple_declarator> <attr_raises_expr>
 | <simple_declarator>
 { “,” <simple_declarator> }*
(108) <attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
 | <set_excep_expr>
(109) <get_excep_expr> ::= “getraises” <exception_list>
(110) <set_excep_expr> ::= “setraises” <exception_list>
(111) <exception_list> ::= “(” <scoped_name>
 { “,” <scoped_name> }* “)”

Note – Grammar rules 1 through 111 with the exception of the last three lines
of rule 2 constitutes the portion of IDL that is not related to components.

(112) <component> ::= <component_dcl>
 | <component_forward_dcl>
(113) <component_forward_dcl> ::= “component” <identifier>
(114) <component_dcl> ::= <component_header>
 “{” <component_body> “}”

324 Appendix A – IDL Grammar

(115) <component_header> ::= “component” <identifier>
 [<component_inheritance_spec>]
 [<supported_interface_spec>]
(116) <supported_interface_spec> ::= “supports” <scoped_name>
 { “,” <scoped_name> }*
(117) <component_inheritance_spec> ::= “:” <scoped_name>
(118) <component_body> ::= <component_export>*
(119) <component_export> ::= <provides_dcl> “;”
 | <uses_dcl> “;”
 | <emits_dcl> “;”
 | <publishes_dcl> “;”
 | <consumes_dcl> “;”
 | <attr_dcl> “;”
(120) <provides_dcl> ::= “provides” <interface_type> <identifier>
(121) <interface_type> ::= <scoped_name>
 | “Object”
(122) <uses_dcl> ::= “uses” [“multiple”]
 <interface_type> <identifier>
(123) <emits_dcl> ::= “emits” <scoped_name> <identifier>
(124) <publishes_dcl> ::= “publishes” <scoped_name> <identifier>
(125) <consumes_dcl> ::= “consumes” <scoped_name> <identifier>
(126) <home_dcl> ::= <home_header> <home_body>
(127) <home_header> ::= “home” <identifier>
 [<home_inheritance_spec>]
 [<supported_interface_spec>]
 “manages” <scoped_name>
 [<primary_key_spec>]
(128) <home_inheritance_spec> ::= “:” <scoped_name>
(129) <primary_key_spec> ::= “primarykey” <scoped_name>
(130) <home_body> ::= “{” <home_export>* “}”
(131) <home_export ::= <export>
 | <factory_dcl> “;”
 | <finder_dcl> “;”
(132) <factory_dcl> ::= “factory” <identifier>
 “(” [<init_param_decls>] “)”
 [<raises_expr>]
(133) <finder_dcl> ::= “finder” <identifier>
 “(” [<init_param_decls>] “)”
 [<raises_expr>]
(134) <event> ::= (<event_dcl> | <event_abs_dcl> |
 <event_forward_dcl>)
(135) <event_forward_dcl> ::= [“abstract”] “eventtype” <identifier>
(136) <event_abs_dcl> ::= “abstract” “eventtype” <identifier>
 [<value_inheritance_spec>]
 “{” <export>* “}”
(137) <event_dcl> ::= <event_header> “{” <value_element>* “}”
(138) <event_header> ::= [“custom”] “eventtype”
 <identifier> [<value_inheritance_spec>]

Appendix B – IDL to Java: Mapping of
IDL Standard Exceptions

IDL Exception Java Class Name
CORBA::UNKNOWN org.omg.CORBA.UNKNOWN

CORBA::BAD_PARAM org.omg.CORBA.BAD_PARAM

CORBA::NO_MEMORY org.omg.CORBA.NO_MEMORY

CORBA::IMP_LIMIT org.omg.CORBA.IMP_LIMIT

CORBA::COMM_FAILURE org.omg.CORBA.COMM_FAILURE

CORBA::INV_OBJREF org.omg.CORBA.INV_OBJREF

CORBA::NO_PERMISSION org.omg.CORBA.NO_PERMISSION

CORBA::INTERNAL org.omg.CORBA.INTERNAL

CORBA::MARSHAL org.omg.CORBA.MARSHAL

CORBA::INITIALIZE org.omg.CORBA.INITIALIZE

CORBA::NO_IMPLEMENT org.omg.CORBA.NO_IMPLEMENT

CORBA::BAD_TYPECODE org.omg.CORBA.BAD_TYPECODE

CORBA::BAD_OPERATION org.omg.CORBA.BAD_OPERATION

CORBA::NO_RESOURCES org.omg.CORBA.NO_RESOURCES

CORBA::NO_RESPONSE org.omg.CORBA.NO_RESPONSE

CORBA::PERSIST_STORE org.omg.CORBA.PERSIST_STORE

CORBA::BAD_INV_ORDER org.omg.CORBA.BAD_INV_ORDER

CORBA::TRANSIENT org.omg.CORBA.TRANSIENT

CORBA::FREE_MEM org.omg.CORBA.FREE_MEM

CORBA::INV_IDENT org.omg.CORBA.INV_IDENT

CORBA::INV_FLAG org.omg.CORBA.INV_FLAG

CORBA::INTF_REPOS org.omg.CORBA.INTF_REPOS

CORBA::BAD_CONTEXT org.omg.CORBA.BAD_CONTEXT

CORBA::OBJ_ADAPTER org.omg.CORBA.OBJ_ADAPTER

CORBA::DATA_CONVERSION org.omg.CORBA.DATA_CONVERSION

CORBA::OBJECT_NOT_EXIST org.omg.CORBA.OBJECT_NOT_EXIST

CORBA::TRANSACTION_REQUIRED org.omg.CORBA.TRANSACTION_REQUIRED

CORBA::TRANSACTION_ROLLEDBACK org.omg.CORBA.TRANSACTION_ROLLEDBACK

CORBA::INVALID_TRANSACTION org.omg.CORBA.INVALID_TRANSACTION

CORBA::INV_POLICY org.omg.CORBA.INV_POLICY

CORBA::CODESET_INCOMPATIBLE org.omg.CORBA.CODESET_INCOMPATIBLE

CORBA::TRANSACTION_MODE org.omg.CORBA.TRANSACTION_MODE

CORBA::TRANSACTION_UNAVAILABLE org.omg.CORBA.TRANSACTION_UNAVAILABLE

CORBA::REBIND org.omg.CORBA.REBIND

CORBA::TIMEOUT org.omg.CORBA.TIMEOUT

CORBA::BAD_QOS org.omg.CORBA.BAD_QOS

Appendix C – Naming Service IDL

// CosNaming.idl
#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_
#pragma prefix "omg.org"
module CosNaming
{
 typedef string Istring;
 struct NameComponent
 {
 Istring id;
 Istring kind;
 };
 typedef sequence<NameComponent> Name;

 enum BindingType { nobject, ncontext };

 struct Binding
 {
 Name binding_name;
 BindingType binding_type;
 };
 // Note: In struct Binding, binding_name is incorrectly
 // defined as a Name instead of a NameComponent. This
 // definition is unchanged for compatibility reasons.
 typedef sequence <Binding> BindingList;

 interface BindingIterator;
 interface NamingContext
 {
 enum NotFoundReason
 {
 missing_node, not_context, not_object
 };
 exception NotFound
 {
 NotFoundReason why;
 Name rest_of_name;
 };
 exception CannotProceed
 {
 NamingContext cxt;
 Name rest_of_name;
 };
 exception InvalidName{};
 exception AlreadyBound {};

 exception NotEmpty{};

 void bind(in Name n, in Object obj)

328 Appendix C – Naming Service IDL

 raises(NotFound, CannotProceed,
 InvalidName, AlreadyBound);
 void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
 void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed,
 InvalidName, AlreadyBound);
 void rebind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);
 Object resolve(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 NamingContext new_context();
 NamingContext bind_new_context(in Name n)
 raises(NotFound, AlreadyBound,
 CannotProceed, InvalidName);
 void destroy() raises(NotEmpty);
 void list(in unsigned long how_many,
 out BindingList bl, out BindingIterator bi);
 };
 interface BindingIterator
 {
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many,
 out BindingList bl);
 void destroy();
 };
 interface NamingContextExt: NamingContext
 {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;
 StringName to_string(in Name n) raises(InvalidName);
 Name to_name(in StringName sn) raises(InvalidName);
 exception InvalidAddress {};
 URLString to_url(in Address addr, in StringName sn)
 raises(InvalidAddress, InvalidName);
 Object resolve_str(in StringName n)
 raises(NotFound, CannotProceed, InvalidName);
 };
};
#endif // _COSNAMING_IDL_

Appendix D – Event Service IDL

// CosEventComm.idl
#ifndef _COS_EVENT_COMM_IDL_
#define _COS_EVENT_COMM_IDL_
#pragma prefix "omg.org"
module CosEventComm
{
 exception Disconnected{};
 interface PushConsumer
 {
 void push(in any data) raises(Disconnected);
 void disconnect_push_consumer();
 };
 interface PushSupplier
 {
 void disconnect_push_supplier();
 };
 interface PullSupplier
 {
 any pull() raises(Disconnected);
 any try_pull(out boolean has_event)
 raises(Disconnected);
 void disconnect_pull_supplier();
 };
 interface PullConsumer
 {
 void disconnect_pull_consumer();
 };
};
#endif

// CosEventChannelAdmin.idl
#ifndef _COS_EVENT_CHANNEL_ADMIN_IDL_
#define _COS_EVENT_CHANNEL_ADMIN_IDL_
#include <CosEventComm.idl>
#pragma prefix "omg.org"
module CosEventChannelAdmin
{
 exception AlreadyConnected {};
 exception TypeError {};
 interface ProxyPushConsumer: CosEventComm::PushConsumer
 {
 void connect_push_supplier(
 in CosEventComm::PushSupplier push_supplier)
 raises(AlreadyConnected);
 };
 interface ProxyPullSupplier: CosEventComm::PullSupplier
 {
 void connect_pull_consumer(

330 Appendix D – Event Service IDL

 in CosEventComm::PullConsumer pull_consumer)
 raises(AlreadyConnected);
 };
 interface ProxyPullConsumer: CosEventComm::PullConsumer
 {
 void connect_pull_supplier(
 in CosEventComm::PullSupplier pull_supplier)
 raises(AlreadyConnected,TypeError);
 };
 interface ProxyPushSupplier: CosEventComm::PushSupplier
 {
 void connect_push_consumer(
 in CosEventComm::PushConsumer push_consumer)
 raises(AlreadyConnected, TypeError);
 };
 interface ConsumerAdmin
 {
 ProxyPushSupplier obtain_push_supplier();
 ProxyPullSupplier obtain_pull_supplier();
 };
 interface SupplierAdmin
 {
 ProxyPushConsumer obtain_push_consumer();
 ProxyPullConsumer obtain_pull_consumer();
 };
 interface EventChannel
 {
 ConsumerAdmin for_consumers();
 SupplierAdmin for_suppliers();
 void destroy();
 };
};
#endif

Appendix E – ORB Product Installation

We assume in the following that the Java 2 Platform Standard Edition 5.0 (J2SE 5.0) is in-
stalled on the system. Since the JDK ORB is part of the J2SE distribution, it is automatically
installed and ready if the J2SE is properly installed. Should assistance be needed with this,
please refer to Sun’s Website with the URL http://java.sun.com/j2se/1.5.0/.

How to Install and Configure OpenORB-1.3.1 on Windows

Download:

URL: http://openorb.sourceforge.net/downloads.html

Click on “Download” for OpenORB “Release 1.3.1”.

Download the following files:

o OpenORB-1.3.1.zip (in section “OpenORB”)
o NamingService-1.3.1.zip (in section “NamingService”)
o PersistantStateService-1.3.0.zip (in section “PersistentStateSer-

vice”)
o EventService-1.3.0.zip (in section “EventService”)

Installation:

Unpack OpenORB-1.3.1.zip. It creates a directory OpenORB-1.3.1.

Unpack the remaining files to OpenORB-1.3.1, automatically creating subdirectories.

Create a new folder bin in directory OpenORB-1.3.1, which is needed later for sev-
eral startup scripts when we implement and test our examples throughout the book. The
resulting folder structure should look as follows:

OpenORB-1.3.1
bin
config
doc
EventService-1.3.0
examples
idl
lib
NamingService-1.3.1
PersistantStateService-1.3.0
test

332 Appendix E – ORB Product Installation

Preparing the ORB batch file:

o Create a new file idl.bat in folder OpenORB-1-3-1/bin containing the
following line of code (Attention: it must be just one single line!):

java –cp
 "%OPENORB_DIR%\lib\openorb_tools-1.3.1.jar;
%OPENORB_DIR%\lib\xerces.jar;
%OPENORB_DIR%\lib\openorb-1.3.1.jar;
%OPENORB_DIR%\lib\junit.jar;
%OPENORB_DIR%\lib\logkit.jar;
%OPENORB_DIR%\lib\excalibur-configuration.jar;
%OPENORB_DIR%\lib\avalon-framework.jar;."
 org.openorb.compiler.IdlCompiler %*

Preparing the Naming Service:

o Copy all .jar archives from directories

OpenORB-1.3.1/NamingService-1.3.1/lib and
OpenORB-1.3.1/PersistantStateService-1.3.0/lib

to directory

OpenORB-1.3.1/lib

o Create a new file nameserv.bat in folder OpenORB-1-3-1/bin containing
the following line of code (Attention: it must be just one single line!):

java -cp
 "%OPENORB_DIR%\lib\openorb_tools-1.3.1.jar;
%OPENORB_DIR%\lib\xerces.jar;
%OPENORB_DIR%\lib\openorb-1.3.1.jar;
%OPENORB_DIR%\lib\logkit.jar;
%OPENORB_DIR%\lib\avalon-framework.jar;
%OPENORB_DIR%\lib\openorb_ins-1.3.1.jar;
%OPENORB_DIR%\lib\openorb_ins_plugins-1.3.1.jar;
%OPENORB_DIR%\lib\openorb_tns-1.3.1.jar;
%OPENORB_DIR%\lib\openorb_pss-1.3.0.jar;
%JDK_DIR%\jre\lib\rt.jar"
 -Xbootclasspath:
"%OPENORB_DIR%\lib\openorb_tools-1.3.1.jar;
%OPENORB_DIR%\lib\xerces.jar;
%OPENORB_DIR%\lib\openorb-1.3.1.jar;
%OPENORB_DIR%\lib\logkit.jar;
%OPENORB_DIR%\lib\avalon-framework.jar;
%OPENORB_DIR%\lib\openorb_ins-1.3.1.jar;
%OPENORB_DIR%\lib\openorb_ins_plugins-1.3.1.jar;
%OPENORB_DIR%\lib\openorb_tns-1.3.1.jar;
%OPENORB_DIR%\lib\openorb_pss-1.3.0.jar;
%JDK_DIR%\jre\lib\rt.jar"
 org.openorb.ins.Server %*

Appendix E – ORB Product Installation 333

Preparing the Event Service:

o Copy all .jar archives from directory

OpenORB-1.3.1/EventService-1.3.0/lib

to directory

OpenORB-1.3.1/lib

o Create a new file eventserv.bat in folder OpenORB-1-3-1/bin contain-
ing the following line of code (Attention: it must be just one single line!):

java -cp
 "%OPENORB_DIR%\lib\openorb_tools-1.3.1.jar;
%OPENORB_DIR%\lib\xerces.jar;
%OPENORB_DIR%\lib\openorb-1.3.1.jar;
%OPENORB_DIR%\lib\logkit.jar;
%OPENORB_DIR%\lib\avalon-framework.jar;
%OPENORB_DIR%\lib\openorb_event-1.3.0.jar;
%OPENORB_DIR%\lib\openorb_pss-1.3.0.jar;
%JDK_DIR%\jre\lib\rt.jar"
 -Xbootclasspath:
"%OPENORB_DIR%\lib\openorb_tools-1.3.1.jar;
%OPENORB_DIR%\lib\xerces.jar;
%OPENORB_DIR%\lib\openorb-1.3.1.jar;
%OPENORB_DIR%\lib\logkit.jar;
%OPENORB_DIR%\lib\avalon-framework.jar;
%OPENORB_DIR%\lib\openorb_event-1.3.0.jar;
%OPENORB_DIR%\lib\openorb_pss-1.3.0.jar;
%JDK_DIR%\jre\lib\rt.jar"
 org.openorb.event.Server %*

How to Install and Configure JacORB_2_2_1 on Windows

Download:

If not installed already, download Ant:

o http://ant.apache.org/bindownload.cgi
o Download file apache-ant-1.6.2-bin.zip.
o Unpack the file. It creates a subdirectory apache-ant-1.6.2.

URL: http://www.jacorb.org/download.html

Click “Full version with source code (Zip format)” .

o Download file JacORB_2_2_1-full.zip.
o Create a directory JacORB_2_2_1.
o Unpack the downloaded file to the new directory.

334 Appendix E – ORB Product Installation

Installation:

Setting environment variables for Ant:

o Open a command line window and set the following environment variables (At-
tention: Modify the paths in the first and second command according to your spe-
cific system environment!):

set ANT_HOME=C:\apache-ant-1.6.2
set JAVA_HOME=C:\jdk1.5.0_01
set PATH=%PATH%;%ANT_HOME%\bin

Go to directory JacORB_2_2_1

Execute Ant by typing ant in the command line window at hitting enter. The required
JacORB files are now automatically built.

Acronyms

API Application Programming Interface
BOA Basic Object Adapter
CCM CORBA Component Model
CDR Common Data Representation
COM+ Component Object Model Plus
CORBA Common Object Request Broker Architecture
DCE Distributed Computing Environment
DCOM Distributed Component Object Model
DII CORBA Dynamic Invocation Interface
DSI Dynamic Skeleton Interface
EBNF Extended Backus Naur Format
ES Event Service
ESIOP Environment-Specific Inter-ORB Protocol
FTP File Transfer Protocol
GIOP General Inter-ORB Protocol
HTTP Hypertext Transfer Protocol
IDL Interface Definition Language
IEEE Institute of Electrical and Electronics Engineers
IIOP Internet Inter-ORB Protocol
INS Interoperable Naming Service
IOR Interoperable Object Reference
IP Internet Protocol
IR Interface Repository
ISO International Standards Organization
J2EE Java 2 Platform, Enterprise Edition
JDK Java Development Kit
MOM Message-Oriented Middleware
NS Naming Service
OMA Object Management Architecture
OMG Object Management Group
ORB Object Request Broker
OSF Open Software Foundation
PIDL Pseudo-IDL
POA Portable Object Adapter
RMI Remote Method Invocation
RPC Remote Procedure Call
TCP/IP Transmission Control Protocol/Internet Protocol
UDP User Datagram Protocol
UML Unified Modeling Language
URL Universal Resource Locator
WWW World Wide Web

References

[BMRS96] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. (1996):
Pattern-Oriented Software Architecture—A System of Patterns. John Wiley &
Sons, Chichester

[Bolt02] Bolton, F. (2002): Pure CORBA—A Code-Intensive Premium Reference.
SAMS Publishing, USA

[Emme00] Emmerich, W. (2000): Engineering Distributed Objects. John Wiley & Sons,
Chichester

[GHJV95] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995): Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Longman

[GJS96] Gosling, J., Joy, B., Steele, G. (1996): The Java Language Specification, First
Edition. Addison-Wesley, Online-Version: http://java.sun.com/docs/books/jls/
index.html

[KJ04] Kircher, M., Jain, P. (2004): Pattern-Oriented Software Architecture, Vol.3 :
Patterns for Resource Management. John Wiley & Sons, Chichester

[Linn98] Linnhoff-Popien, C. (1998): CORBA – Kommunikation und Management.
Springer-Verlag, Berlin

[MM97] Mowbray, T. und R. Malveau (1997): CORBA Desing Patterns. In: John
Wiley & Sons, Chichester

[OMG01] Object Management Group (2001): Event Service Specification. OMG Tech-
nical Document Number formal/01-03-01, URL: ftp://ftp.omg.org/pub/
docs/formal/01-03-01.pdf

[OMG02] Object Management Group (2002): IDL to Java Language Mapping Specifica-
tion. Version 1.2, OMG Technical Document formal/02-08-05

[OMG03a] Object Management Group (2003): Object Transaction Service Specification.
Version 1.4, OMG Technical Document Number formal/03-09-02, URL:
http://www.omg.org/cgi-bin/doc?formal/03-09-02

[OMG03b] Object Management Group (2003): OMG Unified Modeling Language Speci-
fication. Version 1.5, OMG Technical Document Number formal/03-03-01,
URL: http://www.omg.org/cgi-bin/doc?formal/03-03-01

[OMG04a] Object Management Group (2004): Naming Service Specification. Version
1.3, OMG Technical Document Number formal/04-10-03, URL: http://
www.omg.org/cgi-bin/doc?formal/04-10-03

338 References

[OMG04b] Object Management Group (2004): Notification Service Specification. Ver-
sion 1.1, OMG Technical Document Number formal/04-10-13, URL: http://
www.omg.org/cgi-bin/doc?formal/04-10-13

[OMG04c] Object Management Group (2004): The Common Object Request Broker: Ar-
chitecture and Specification. Version 3.0.3, OMG Technical Document Num-
ber formal/04-03-12, URL: ftp://ftp.omg.org/pub/docs/formal/04-03-12.pdf

[OMG98] Object Management Group (1998): OMG IDL Style Guide. OMG Technical
Document Number ab/98-06-03

Index

#

#include ... 31, 57, 153
#pragma.. 31, 203

_

_all_interfaces().......... 126, 128, 257, 259
_create_request()...................................See

create_request()
_default_POA() ... 128
_get_interface_def()................... 124, 127
_object_id().. 128
_orb() .. 128
_poa() .. 128
_request() 238, 241, 242

A

abstract
interface.................................. 49, 50, 55, 56, 80
value typeSee value type

abstraction... 6
access transparency......................See transparency
Active Object Map...... 98–99, 101–3, 106, 263–64
add() .. 115, 121
add_in_arg()...................... 116, 121, 249, 250
add_inout_arg()............................... 116, 121
add_item() .. 115, 121
add_named_in_arg() 116, 121
add_named_inout_arg() 117, 121
add_named_out_arg() 117, 121
add_out_arg() 117, 121, 242, 243, 246
add_value() 115, 121, 243, 256
aggregation.. 6
AlreadyBound...................................... 273, 283
AlreadyConnected 303, 310
alternative IDL designs 160–68
anonymous types... 60–61
any

creation... 94
declaration.. 37
example .. 210–14
IDL type ... 34
Java mapping................................ 67, 68, 84–86

Any ... 67, 68, 84–86
AnyTest... See examples
arguments()

in Request... 121, 243
in ServerRequest 124, 125, 256

arrays... 40, 75
association... 6
attribute

concept ... 6
declaration.. 51

Java mapping.. 86–87

B

Bank.. See examples
Basic Object Adapter .. 17
bind() .. 272
bind_context() ... 273
bind_new_context() 273, 283–85
binding .. 7
Binding ... 287–89
BindingIterator

example .. 287–89
interface.. 288

BOA................................See Basic Object Adapter
boolean ... 33, 66, 68
bounded

sequence... 39, 75, 224
string .. 39

boxed value typeSee value type

C

callback............................. See distributed callback
CannotProceed 273, 278, 284
case... 36–37
CBCount .. See examples
char... 34, 43, 45, 66, 68
child POA 99, 100, 102, 104, 107, 263–68
class .. 6
client ... 17
command-line options................................. 275–76
comment.. 27
Common Object Request Broker Architecture

domain objects ... 15
facilities.. 14
services

description ... 14
event .. 297–316
naming... 269–94

URL schemes ... 274–75
Compute .. See examples
ComputeServer See Compute
concurrency transparency.............See transparency
connect_pull_consumer() 300–301
connect_pull_supplier() 300–301
connect_push_consumer() ... 300–301, 309
connect_push_supplier() ... 300–301, 303
const .. 44–46
ConsumerAdmin 301–2, 314
contexts() .. 121
CORBA......... See Common Object Request Broker

Architecture
corbaloc ... 274–75
corbaname... 274–75

340 Index

Core Object Model.. 13
count().. 121
Counter...See examples
CounterFactorySee examples
create_any().............................. 213, 243, 251
create_dyn_any() 217, 229, 245
create_dyn_any_from_type_code() 217,

232
create_environment()........................... 122
create_list() 118, 122, 244, 258
create_operation_list()............ 118, 122
create_POA().............. 100, 106, 107, 263, 267
create_request() 116, 119, 123, 244
create_request_processing_policy()

.. 103, 109, 267
create_servant_retention_policy()

.. 103, 110, 267
create_struct_tc() 231–32, 245
ctx()

in Request ... 121
in ServerRequest........................... 124, 125

D

DateTimeServerSee examples
default servant 98, 101, 126
delegation approach 79, 144–47, 177–79
destroy()

in BindingIterator 288, 289
in DynAny ... 219, 231
in EventChannel 302
in NamingContext................................... 273
in ORB .. 93, 97
in POA .. 102, 109

DII..................... See Dynamic Invocation Interface
disconnect_pull_consumer() 300–301
disconnect_pull_supplier() 300–301
disconnect_push_consumer() ... 300–301,

309, 313
disconnect_push_supplier() ... 300–301,

309
Disconnected.............................. 300, 301, 309
distributed callback 187–94
distributed system.. 8
double .. 34, 45, 67, 68
DSISee Dynamic Skeleton Interface
duplicate() .. 111, 112
dynamic behavior .. 6
Dynamic Invocation Interface

description.. 114–24
examples... 235–51
overview... 19–20

Dynamic Skeleton Interface
description.. 124–26
example .. 255–61
overview... 20

DynamicAny... 211–33
DynamicImplementation 124, 125
DynAny .. 218–20
DynAnyFactory 215–18
DynArray ... 224–25

DynEnum.. 221–22
DynFixed ... 221
DynSequence .. 223–24
DynStruct ... 223
DynUnion ... 223
DynValue ... 225–26
DynValueBox .. 226
DynValueCommon ... 225

E

encapsulation... 6
enum... 36, 74–75
env() .. 122, 252
Environment 117, 122, 252
equivalent()...................................... 214, 219
escaped character .. 290
escaped identifier .. 28
Event Service .. 297–316
EventChannel...................... 301–2, 301–2, 311
examples

AnyTest ... 210–14
Bank .. 255–61
CBCount ... 187–94
Compute ... 247–51
Counter

client .. 141–43
delegation approach........................... 144–47
dynamic client 236–39
GUI client .. 147–49
IDL interface ... 131
inheritance approach.......................... 136–41

CounterFactory 153–59
DateTimeServer 171–84
PublishSubscribe

ES version ... 307–16
value type version............................ 197–209

TimeServer
attributes version 161–63
operations version.............................. 163–64
out version....................................... 164–65
struct version................................ 165–66
struct/out version........................ 166–68

exception 47–48, 75–77
exceptions()...................................... 121, 252
extract() ... 69, 214

F

factory
design pattern ... 1, 153
IDL keyword 53, 82, 199

failure transparency......................See transparency
FALSE .. 34, 44
fault tolerance.. 9
file organization

client... 141
server.. 135

find_POA() .. 100, 107
fixed 38–39, 42, 45, 67, 68
float .. 34, 42, 47, 67, 68
for_consumers()............................... 302, 314

 Index 341

for_suppliers()............................... 302, 310
from_any() .. 219

G

General Inter-ORB Protocol 23
generalization.. 7
get_interface()............................... 120, 124
get_next_response() 119, 123
get_primitive_tc() 232, 237, 239
get_response() 19, 118, 121, 247, 250
GIOP................... See General Inter-ORB Protocol

H

helper classes .. 69–70
heterogeneity... 9
holder classes .. 67–68

I

id()... 69
identifiers .. 28
IDL................... See Interface Definition Language
IIOPSee Internet Inter-ORB Protocol
Implementation Repository................................. 20
in ... 52, 86, 153
incarnate() .. 106, 126
information hiding... 6
inheritance

approach... 141
concept ... 7
multiple .. 7
of interfaces.......................... 49–51, 56, 171–84
of value types ... 56
single .. 7

init() .. 94, 138
inout .. 52, 67, 86
insert() ... 69
insertXYZ()

in DynAny ... 215
in helper classes.. 85

instance ... 6
interface

abstract ..See abstract
declaration.. 48–53
inheritanceSee inheritance
Java mapping.. 78–80
local..See local

Interface Definition Language................. 18, 27–61
Interface Repository.............. 18–19, 111, 119, 124
Internet Inter-ORB Protocol.......................... 16, 24
interoperability.. 22–25, 60
Interoperable Object Reference

concept ... 18, 24–25
creation... 100, 108, 268
narrowing ... 69, 96
stringified 97, 139, 143

InvalidName 91, 96, 273
invoke()

in DynamicImplementation 124, 125, 257
in Request......................... 117, 235, 239, 241

IORSee Interoperable Object Reference

IR See Interface Repository
is_a() .. 111, 112
is_equivalent() 111, 112
is_nil() ... 111, 112
item() .. 116

J

Java mapping
DII.. 120–24
DSI ... 125–26
general.. 65–87
Object... 111–12
ORB ... 93–97
POA ... 107–10
Servant ... 126–28

K

keywords... 30
kind() .. 113, 214, 229

L

lexical elements... 27–32
list() .. 273, 287
list_initial_services() 91, 96
local .. 50
location transparencySee transparency
long... 33, 66, 68
long double 34, 67, 68
long long... 33, 67, 68

M

marshaling... 10, 68
message... 6
method .. 6
middleware.. 5
migration transparency.................See transparency
modularization .. 6
module 56–57, 70, 149–51

N

NameComponent 270, 277
NamedValue 114–15, 120, 243, 244
Naming Service... 269–94
NamingContext 272–74, 277, 279
NamingContextExt 289–94
narrow() ... 69, 139, 143
native... 40
new_context() ... 273
next_n() ... 273, 288
next_one() .. 273, 288
non_existent() 111, 112
NotEmpty ... 273
NotFound 272, 278, 284
NVList 114, 115, 121, 243, 244

O

object
adapter...................See Portable Object Adapter
concept ... 6
reference.....See Interoperable Object Reference

342 Index

Object
DII .. 119–24
Java mapping.. 111–12
PIDL... 110–11

object ID ... 17, 139
Object Request Broker 15–16

interface.. 97
OBJECT_NOT_EXIST 219, 309
object_to_string() 92, 96, 138
obtain_pull_consumer() 302
obtain_pull_supplier() 302
obtain_push_consumer() 302, 310
obtain_push_supplier() 302, 314
octet .. 34, 66, 68
oneway .. 52, 53, 118, 194
openness.. 8
operation ... 6

declaration.. 52–53
Java mapping.. 87

operation()
in Request ... 121
in ServerRequest........................... 125, 257

ORBSee Object Request Broker
ORB_init()... 90, 94
-ORBDefaultInitRef 276
-ORBInitRef .. 276, 280
out ... 52, 67, 86, 164

P

perform_work() 93, 97
performance transparencySee transparency
persistent ... 25
PIDL... See pseudo IDL
POA See Portable Object Adapter
POAManager............................... 104–6, 139, 263
Policy .. 267
PolicyList... 267
poll_next_response()................... 119, 123
poll_response()................. 19, 118, 247, 250
polymorphism ... 7
Portable Object Adapter.......... 17, 97–110, 263–68
postinvoke().............................. 107, 264, 265
preinvoke() 107, 264, 265
preprocessor directives.. 31
private ... 53
programming by contract 7
proxy ... 21, 22
ProxyPullConsumer 301–4
ProxyPullSupplier 301–4
ProxyPushConsumer 301–4, 307–16
ProxyPushSupplier 301–4, 307–16
pseudo IDL.. 89
public .. 53
PublishSubscribeSee examples
pull model ... 298–300
pull() .. 299, 301
PullConsumer...................................... 300–301
PullSupplier...................................... 300–301
punctuation characters... 30
push model .. 298–300

push() 299, 301, 309, 313
PushConsumer........................ 300–301, 307–16
PushSupplier........................ 300–301, 307–16

R

raises .. 52, 59
rebind() 272, 273, 278
rebind_context() 273, 282
regular value type..............................See value type
release() 111, 112, 155
Remote Procedure Call 5, 9
remove() ... 116
replication transparencySee transparency
repository ID ... 19, 31, 200
Request.............. 116–18, 119, 121, 235, 237–39
resolve() 273, 279, 284, 286
resolve_initial_references()... 92, 96,

138, 216, 275, 277
result() ... 121
return_value() 117, 239, 241
reusability.. 7

black box reuse... 7
white box reuse... 7

root POA................................. 90, 96, 99, 128, 138
RPC............................. See Remote Procedure Call
run() .. 93, 97, 139

S

scalability .. 8
scaling transparency.....................See transparency
scoping.. 57–59
send_deferred()............... 118, 247, 250, 252
send_multiple_requests_deferred()

... 119, 123
send_multiple_requests_oneway() 119,

123
send_oneway() 118, 121
sequence.. 39–40, 75
servant... 17
Servant.. 126–28
ServantActivator 106
ServantLocator 106, 264–66
server... 17
ServerRequest 124–26, 257
set_exception()............................... 125, 126
set_result().............................. 125, 126, 257
set_return_type().................. 117, 239, 243
set_servant_manager() 101, 108, 267
short .. 33, 66, 68
shutdown() 93, 97, 314
skeleton ... 20
specialization .. 7
state ... 6
string .. 39, 66, 68
string_to_object() 92, 96, 143
stringified names 289, 290
stub.. 20, 78
style guidelines.. 28–29
subclass ... 7
substitution.. 7

 Index 343

superclass .. 7
SupplierAdmin 301–2
supports ... 54–56
switch .. 36, 37

T

TCKind .. 113, 214
TimeServer See examples
to_any() 219, 229, 232
to_name() ... 291, 292
transient... 25
transparency .. 10–11

access ... 11
concurrency.. 11
failure ... 11
location... 11
migration .. 11
performance.. 11
replication... 11
scaling .. 11

TRUE... 34, 44
try_pull() .. 299, 301
TypeCode 113–14, 211–14, 227–29
typedef.. 38, 72
TypeError ... 303
typeprefix 31, 203, 306

U

unbind() ... 273
unbounded

sequence... 39
string .. 39

union .. 36–37
unmarshaling... 10
unsigned long 33, 67, 68
unsigned long long 33, 67, 68
unsigned short 33, 66, 68
URL schemes .. 274–75

V

value type
abstract 53, 54, 55, 56, 82
boxed.. 54, 56, 83–84
regular 53, 56, 82, 197–209

ValueBase... 81, 83
valuetype... 53
void... 33

W

wchar .. 34, 66, 68
whole... 6
work_pending() 93, 97
wstring 39, 44, 45, 66, 68

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

